Skip to main content

Feature Representation of AutoEncoders for Unsupervised IoT Malware Detection

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13076))

Included in the following conference series:

Abstract

The feature representation of AutoEncoders (AEs) has been widely used for unsupervised learning, particularly in cybersecurity domain, and demonstrated promising performance. However, deeply investigations of the feature learner for the task of IoT attack detection in unsupervised learning have not been carried out yet. In this paper, we study the feature representation of AEs in combination with a subsequent clustering-based technique like Self-Organizing Maps (SOM) for unsupervised learning IoT attack detection. This aims to get insight into the characteristics of the AE learners in the tasks of unsupervised IoT detection such as identifying unknown/new IoT attacks and transfer learning. To highlight the behavior of AE-based learners, a feature reduction like Principle Component Analysis (PCA) is used to construct a feature space for facilitating SOM. The proposed models are investigated and assessed extensively by a number of experiments and analyses on the NBaIoT dataset. The experimental results highly suggest that AEs should be used for transferring models as training data is highly un-balanced and includes IoT attacks being similar to Benign. If the training data seems to be balanced, and contains IoT attacks being significantly deviated from Benign, the feature reduction like PCA is more preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://keras.io/.

  2. 2.

    https://scikit-learn.org/.

  3. 3.

    https://github.com/JustGlowing/minisom.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT.

  5. 5.

    https://en.wikipedia.org/wiki/Mirai_(malware).

  6. 6.

    https://en.wikipedia.org/wiki/BASHLITE.

References

  1. Abomhara, M., Køien, G.M.: Cyber security and the internet of things: vulnerabilities, threats, intruders and attacks. J. Cyber Secur. Mob. 65–88 (2015)

    Google Scholar 

  2. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 291–294 (1988). https://doi.org/10.1007/BF00332918

  3. Bui, T.C., Cao, V.L., Hoang, M., Nguyen, Q.U.: A clustering-based shrink autoencoder for detecting anomalies in intrusion detection systems. In: 2019 11th International Conference on Knowledge and Systems Engineering (KSE), pp. 1–5. IEEE (2019)

    Google Scholar 

  4. Cao, V.L., Nicolau, M., McDermott, J.: A hybrid autoencoder and density estimation model for anomaly detection. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 717–726. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_67

    Chapter  Google Scholar 

  5. Cao, V.L., Nicolau, M., McDermott, J.: Learning neural representations for network anomaly detection. IEEE Trans. Cybern. 49(8), 3074–3087 (2018)

    Article  Google Scholar 

  6. Colombini, G.G., de Abreu, I.B.M., Cerri, R.: A self-organizing map-based method for multi-label classification. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4291–4298. IEEE (2017)

    Google Scholar 

  7. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize its potential. Computer 49(8), 112–116 (2016)

    Article  Google Scholar 

  8. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46145-0_17

    Chapter  Google Scholar 

  11. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length, and Helmholtz free energy. Adv. Neural. Inf. Process. Syst. 6, 3–10 (1994)

    Google Scholar 

  12. Japkowicz, N., Myers, C., Gluck, M., et al.: A novelty detection approach to classification. In: IJCAI, vol. 1, pp. 518–523. Citeseer (1995)

    Google Scholar 

  13. Jolliffe, I.: Principal component analysis. Encycl. Stat. Behav. Sci. 30(3), 487 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  16. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  17. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  18. Meidan, Y., et al.: N-baiot–network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 17(3), 12–22 (2018)

    Article  Google Scholar 

  19. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089 (2018)

  20. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.R.: Dïot: a federated self-learning anomaly detection system for IoT. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 756–767. IEEE (2019)

    Google Scholar 

  21. Nguyen, V.Q., Nguyen, V.H., Le-Khac, N.-A., Cao, V.L.: Clustering-based deep autoencoders for network anomaly detection. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds.) FDSE 2020. LNCS, vol. 12466, pp. 290–303. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63924-2_17

    Chapter  Google Scholar 

  22. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  23. Rauber, A.: LabelSOM: on the labeling of self-organizing maps. In: IJCNN 1999. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), vol. 5, pp. 3527–3532. IEEE (1999)

    Google Scholar 

  24. Ray, S., Jin, Y., Raychowdhury, A.: The changing computing paradigm with internet of things: a tutorial introduction. IEEE Design Test 33(2), 76–96 (2016)

    Article  Google Scholar 

  25. Song, C., Liu, F., Huang, Y., Wang, L., Tan, T.: Auto-encoder based data clustering. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8_15

    Chapter  Google Scholar 

  26. Tian, J., Azarian, M.H., Pecht, M.: Anomaly detection using self-organizing maps-based k-nearest neighbor algorithm. In: PHM Society European Conference, vol. 2 (2014)

    Google Scholar 

  27. Tsai, C.W., Lai, C.F., Chiang, M.C., Yang, L.T.: Data mining for internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 77–97 (2013)

    Article  Google Scholar 

  28. Vu, L., Cao, V.L., Nguyen, Q.U., Nguyen, D.N., Hoang, D.T., Dutkiewicz, E.: Learning latent distribution for distinguishing network traffic in intrusion detection system. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

  29. Vu, L., Nguyen, Q.U., Nguyen, D.N., Hoang, D.T., Dutkiewicz, E.: Deep transfer learning for IoT attack detection. IEEE Access 8, 107335–107344 (2020)

    Article  Google Scholar 

  30. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Loi Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.N., Nguyen, V.C., Tran, N.N., Cao, V.L. (2021). Feature Representation of AutoEncoders for Unsupervised IoT Malware Detection. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91387-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91386-1

  • Online ISBN: 978-3-030-91387-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics