Skip to main content

Efficient Brain Hemorrhage Detection on 3D CT Scans with Deep Neural Network

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13076))

Included in the following conference series:

  • 1019 Accesses

Abstract

A brain hemorrhage is a type of stroke that can cause brain damage and can be life-threatening. The outcome of a brain bleed depends on its location inside the skull, the size of the bleed, and the duration between bleeding and treatment. Brain damage can be severe and results in physical and mental disability. Therefore, saving the lives of such patients completely depends on detecting the correct location of the hemorrhage in an early stage. U-Net is an architecture developed for fast and precise segmentation of biomedical images. Its success in medical image segmentation has been attracting much attention from researchers. In this paper, we propose a novel method for automatic brain hemorrhage detection on 3D CT images using U-Net with a transfer learning approach. The 3D CT images are preprocessed by slicing NIfTI files to 2D, splitting, filtering, and normalization to create input data for our model. We refine and pre-train the U-Net model to detect brain hemorrhage regions on the CT scans. Our proposed method is evaluated on a set of 3D CT-scan images and obtains an accuracy of 92.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/dhruvp/wbc-classification/tree/master/Original_Images.

  2. 2.

    https://www.wadsworth.org/.

  3. 3.

    https://www.kaggle.com/alessiocorrado99/ animals10#translate.py.

  4. 4.

    https://www.kaggle.com/mbkinaci/chair-kitchen-knife-saucepan.

References

  1. Brownlee, J.: How to use learning curves to diagnose machine learning model performance. Mach. Learn. Mastery (2019)

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Falk, T., et al.: U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)

    Article  Google Scholar 

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  5. Gonzalez-Hidalgo, M., Guerrero-Pena, F., Herold-García, S., Jaume-i Capó, A., Marrero-Fernández, P.D.: Red blood cell cluster separation from digital images for use in sickle cell disease. IEEE J. Biomed. Health Inform. 19(4), 1514–1525 (2014)

    Article  Google Scholar 

  6. Hssayeni, M.: Computed tomography images for intracranial hemorrhage detection and segmentation. PhysioNet (2019)

    Google Scholar 

  7. Hssayeni, M.D., Croock, M.S., Salman, A.D., Al-khafaji, H.F., Yahya, Z.A., Ghoraani, B.: Intracranial hemorrhage segmentation using a deep convolutional model. Data 5(1), 14 (2020)

    Article  Google Scholar 

  8. Janani, R., Vijayarani, S.: An efficient text pattern matching algorithm for retrieving information from desktop. Indian J. Sci. Technol. 9(43), 1–11 (2016)

    Article  Google Scholar 

  9. Kohl, S.A., et al.: A probabilistic U-net for segmentation of ambiguous images. arXiv preprint arXiv:1806.05034 (2018)

  10. Labati, R.D., Piuri, V., Scotti, F.: All-IDB: the acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing, pp. 2045–2048. IEEE (2011)

    Google Scholar 

  11. Luong, K.G., et al.: A computer-aided detection to intracranial hemorrhage by using deep learning: a case study. In: Huang, Y.-P., Wang, W.-J., Quoc, H.A., Giang, L.H., Hung, N.-L. (eds.) GTSD 2020. AISC, vol. 1284, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62324-1_3

    Chapter  Google Scholar 

  12. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  13. Phan, A.-C., Cao, H.-P., Trieu, T.-N., Phan, T.-C.: Detection and classification of brain hemorrhage using hounsfield unit and deep learning techniques. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds.) FDSE 2020. CCIS, vol. 1306, pp. 281–293. Springer, Singapore (2020). https://doi.org/10.1007/978-981-33-4370-2_20

    Chapter  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Roy, P., Ghosh, S., Bhattacharya, S., Pal, U.: Effects of degradations on deep neural network architectures. arXiv preprint arXiv:1807.10108 (2018)

  16. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  17. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  18. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh-Cang Phan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phan, AC., Tran, HD., Phan, TC. (2021). Efficient Brain Hemorrhage Detection on 3D CT Scans with Deep Neural Network. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91387-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91386-1

  • Online ISBN: 978-3-030-91387-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics