Abstract
A brain hemorrhage is a type of stroke that can cause brain damage and can be life-threatening. The outcome of a brain bleed depends on its location inside the skull, the size of the bleed, and the duration between bleeding and treatment. Brain damage can be severe and results in physical and mental disability. Therefore, saving the lives of such patients completely depends on detecting the correct location of the hemorrhage in an early stage. U-Net is an architecture developed for fast and precise segmentation of biomedical images. Its success in medical image segmentation has been attracting much attention from researchers. In this paper, we propose a novel method for automatic brain hemorrhage detection on 3D CT images using U-Net with a transfer learning approach. The 3D CT images are preprocessed by slicing NIfTI files to 2D, splitting, filtering, and normalization to create input data for our model. We refine and pre-train the U-Net model to detect brain hemorrhage regions on the CT scans. Our proposed method is evaluated on a set of 3D CT-scan images and obtains an accuracy of 92.5%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brownlee, J.: How to use learning curves to diagnose machine learning model performance. Mach. Learn. Mastery (2019)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Falk, T., et al.: U-net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16(1), 67–70 (2019)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Gonzalez-Hidalgo, M., Guerrero-Pena, F., Herold-García, S., Jaume-i Capó, A., Marrero-Fernández, P.D.: Red blood cell cluster separation from digital images for use in sickle cell disease. IEEE J. Biomed. Health Inform. 19(4), 1514–1525 (2014)
Hssayeni, M.: Computed tomography images for intracranial hemorrhage detection and segmentation. PhysioNet (2019)
Hssayeni, M.D., Croock, M.S., Salman, A.D., Al-khafaji, H.F., Yahya, Z.A., Ghoraani, B.: Intracranial hemorrhage segmentation using a deep convolutional model. Data 5(1), 14 (2020)
Janani, R., Vijayarani, S.: An efficient text pattern matching algorithm for retrieving information from desktop. Indian J. Sci. Technol. 9(43), 1–11 (2016)
Kohl, S.A., et al.: A probabilistic U-net for segmentation of ambiguous images. arXiv preprint arXiv:1806.05034 (2018)
Labati, R.D., Piuri, V., Scotti, F.: All-IDB: the acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing, pp. 2045–2048. IEEE (2011)
Luong, K.G., et al.: A computer-aided detection to intracranial hemorrhage by using deep learning: a case study. In: Huang, Y.-P., Wang, W.-J., Quoc, H.A., Giang, L.H., Hung, N.-L. (eds.) GTSD 2020. AISC, vol. 1284, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62324-1_3
Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Phan, A.-C., Cao, H.-P., Trieu, T.-N., Phan, T.-C.: Detection and classification of brain hemorrhage using hounsfield unit and deep learning techniques. In: Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds.) FDSE 2020. CCIS, vol. 1306, pp. 281–293. Springer, Singapore (2020). https://doi.org/10.1007/978-981-33-4370-2_20
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roy, P., Ghosh, S., Bhattacharya, S., Pal, U.: Effects of degradations on deep neural network architectures. arXiv preprint arXiv:1807.10108 (2018)
Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Phan, AC., Tran, HD., Phan, TC. (2021). Efficient Brain Hemorrhage Detection on 3D CT Scans with Deep Neural Network. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. FDSE 2021. Lecture Notes in Computer Science(), vol 13076. Springer, Cham. https://doi.org/10.1007/978-3-030-91387-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-91387-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91386-1
Online ISBN: 978-3-030-91387-8
eBook Packages: Computer ScienceComputer Science (R0)