Skip to main content

On EEG Preprocessing Role in Deep Learning Effectiveness for Mental Workload Classification

  • Conference paper
  • First Online:
Human Mental Workload: Models and Applications (H-WORKLOAD 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1493))

Abstract

A high mental workload level could significantly contribute to mental fatigue, decreased performance, or long-term health problems [14]. Recently, deep learning models have been trained on Electroencephalogram (EEG) signals to detect users’ mental workload. While such approaches show promising results, they either ignore the noise element inherent in the EEG signals or apply a random set of preprocessing techniques to reduce the noise. Such a lack of uniform preprocessing techniques in cleaning the EEG signals would not allow the comparison of the effectiveness of deep learning models across different studies even when they use the data collected from the same experiment. Therefore, in this study, we aim to investigate the effect of preprocessing techniques defined by neuroscientists in the effectiveness of deep learning models. To do so, we focused on the preprocessing techniques that can be automated and do not need any human intervention, namely a high-pass filter, the ADJUST algorithm, and a re-referencing. Using a publicly available mental workload dataset, STEW, we investigate the effect of these preprocessing techniques in three state-of-the-art deep learning models named Stacked LSTM, BLSTM, and BLSTM-LSTM. Our results show that ADJUST has the most significant effect on the performance of our models compare to other steps. Our findings also show that EEG signals that were prepossessed using the high-pass filter, ADJUST algorithm and re-referencing provided the highest classification performance across the investigated deep learning models. We believe this paper provides an important step towards defining a uniform methodological framework for using deep learning models on EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All preprocessing techniques were performed using EEGLAB v12, running under the cross-platform MATLAB environment.

References

  1. Makoto’s preprocessing pipeline. https://sccn.ucsd.edu/wiki/Makoto’s_preprocessing_pipeline

  2. Arico, P., et al.: Reliability over time of EEG-based mental workload evaluation during air traffic management (ATM) tasks. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7242–7245. IEEE (2015)

    Google Scholar 

  3. Berka, C., et al.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation Space Environ. Med. 78(5), B223–B244 (2007)

    Google Scholar 

  4. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A.: The prep pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinformatics 9, 16 (2015). https://www.frontiersin.org/article/10.3389/fninf.2015.00016

  5. Bilalpur, M., Kankanhalli, M., Winkler, S., Subramanian, R.: EEG-based evaluation of cognitive workload induced by acoustic parameters for data sonification. In: Proceedings of the 20th ACM International Conference on Multimodal Interaction, pp. 315–323 (2018)

    Google Scholar 

  6. Buiatti, M., Mognon, A.: ADJUST: An Automatic EEG artifact Detector based on the Joint Use of Spatial and Temporal features, A Tutorial (2014). https://www.nitrc.org/docman/view.php/739/2101/ADJUST%20Tutorial. Accessed 3 Aug 2020

  7. Buscher, G., Dengel, A., Biedert, R., Elst, L.V.: Attentive documents: eye tracking as implicit feedback for information retrieval and beyond. ACM Trans. Interactive Intell. Syst. (TiiS) 1(2), 1–30 (2012)

    Article  Google Scholar 

  8. Chakladar, D.D., Dey, S., Roy, P.P., Dogra, D.P.: EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomedical Signal Processing and Control 60, 101989 (2020)

    Article  Google Scholar 

  9. Debnath, R., Buzzell, G.A., Morales, S., Bowers, M.E., Leach, S.C., Fox, N.A.: The Maryland analysis of developmental EEG (made) pipeline. Psychophysiology 57(6), e13580 (2020)

    Article  Google Scholar 

  10. van Erp, J.B., Brouwer, A.M., Zander, T.O.: Using neurophysiological signals that reflect cognitive or affective state. Front. Neuroscience 9, 193 (2015)

    Google Scholar 

  11. Gabard-Durnam, L.J., Mendez Leal, A.S., Wilkinson, C.L., Levin, A.R.: The harvard automated processing pipeline for electroencephalography (happe): standardized processing software for developmental and high-artifact data. Front. Neurosci. 12, 97 (2018). https://www.frontiersin.org/article/10.3389/fnins.2018.00097

  12. Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. J. R. Stat. Soc. Ser. D (Stat.) 33(4), 391–399 (1984)

    Google Scholar 

  13. Groppe, D.M., Makeig, S., Kutas, M.: Identifying reliable independent components via split-half comparisons. Neuroimage 45(4), 1199–1211 (2009)

    Article  Google Scholar 

  14. Holm, A., Lukander, K., Korpela, J., Sallinen, M., Müller, K.M.: Estimating brain load from the EEG. Scientific World J. 9, 639–651 (2009)

    Article  Google Scholar 

  15. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116(1), 770–799 (1951)

    Article  Google Scholar 

  16. Islam, M.K., Rastegarnia, A., Yang, Z.: Methods for artifact detection and removal from scalp EEG: a review. Neurophysiologie Clinique/Clin. Neurophysiol. 46(4–5), 287–305 (2016)

    Article  Google Scholar 

  17. Jeong, J.H., Yu, B.W., Lee, D.H., Lee, S.W.: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals. Brain Sci. 9(12), 348 (2019)

    Article  Google Scholar 

  18. Kuanar, S., Athitsos, V., Pradhan, N., Mishra, A., Rao, K.R.: Cognitive analysis of working memory load from EEG, by a deep recurrent neural network. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2576–2580. IEEE (2018)

    Google Scholar 

  19. Lee, D.H., Jeong, J.H., Kim, K., Yu, B.W., Lee, S.W.: Continuous EEG decoding of pilots’ mental states using multiple feature block-based convolutional neural network. IEEE Access 8, 121929–121941 (2020)

    Article  Google Scholar 

  20. Li, X., Song, D., Zhang, P., Zhang, Y., Hou, Y., Hu, B.: Exploring EEG features in cross-subject emotion recognition. Front. Neurosci. 12, 162 (2018)

    Article  Google Scholar 

  21. Lim, W., Sourina, O., Wang, L.: Stew: simultaneous task EEG workload data set. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2106–2114 (2018)

    Article  Google Scholar 

  22. Longo, L., Rusconi, F., Noce, L., Barrett, S.: The importance of human mental workload in web design. In: WEBIST, pp. 403–409 (2012)

    Google Scholar 

  23. Makeig, S., Bell, A.J., Jung, T.P., Sejnowski, T.J.: Independent component analysis of electroencephalographic data. In: Advances in Neural Information Processing Systems, pp. 145–151 (1996)

    Google Scholar 

  24. Martin, R.: Noise power spectral density estimation based on optimal smoothing and minimum statistics. IEEE Trans. Speech Audio Process. 9(5), 504–512 (2001)

    Article  Google Scholar 

  25. McKight, P.E., Najab, J.: Kruskal-wallis test. The corsini encyclopedia of psychology p. 1 (2010)

    Google Scholar 

  26. McKnight, P.E., Najab, J.: Mann-whitney u test. The Corsini encyclopedia of psychology p. 1 (2010)

    Google Scholar 

  27. Mognon, A., Jovicich, J., Bruzzone, L., Buiatti, M.: Adjust: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48(2), 229–240 (2011)

    Article  Google Scholar 

  28. Nagabushanam, P., George, S.T., Radha, S.: EEG signal classification using LSTM and improved neural network algorithms. Soft Comput. 1–23 (2019)

    Google Scholar 

  29. Nussbaumer, H.J.: The fast Fourier transform. In: Fast Fourier Transform and Convolution Algorithms. SSINF, vol. 2, pp. 80–111. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-662-00551-4_4

    Chapter  MATH  Google Scholar 

  30. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  Google Scholar 

  31. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling procedure for measuring mental workload. In: Advances in Psychology, vol. 52, pp. 185–218. Elsevier (1988)

    Google Scholar 

  32. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Article  Google Scholar 

  33. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  34. Taylor, L.P.: Chapter 20 - independent assessor audit guide. In: Taylor, L.P. (ed.) FISMA Compliance Handbook, pp. 239–273. Syngress, Boston (2013). https://www.sciencedirect.com/science/article/pii/B9780124058712000208

  35. Urigüen, J.A., Garcia-Zapirain, B.: EEG artifact removal—state-of-the-art and guidelines. J. Neural Eng. 12(3), 031001 (2015). https://doi.org/10.1088%2F1741-2560%2F12%2F3%2F031001

  36. Vaid, S., Singh, P., Kaur, C.: EEG signal analysis for BCI interface: a review. In: 2015 Fifth International Conference on Advanced Computing and Communication Technologies, pp. 143–147. IEEE (2015)

    Google Scholar 

  37. Varshney, A., Ghosh, S.K., Padhy, S., Tripathy, R.K., Acharya, U.R.: Automated classification of mental arithmetic tasks using recurrent neural network and entropy features obtained from multi-channel EEG signals. Electronics 10(9), 1079 (2021)

    Article  Google Scholar 

  38. Wang, S., Gwizdka, J., Chaovalitwongse, W.A.: Using wireless EEG signals to assess memory workload in the \(n\)-back task. IEEE Trans. Hum. Mach. Syst. 46(3), 424–435 (2015)

    Article  Google Scholar 

  39. Wiebe, E.N., Roberts, E., Behrend, T.S.: An examination of two mental workload measurement approaches to understanding multimedia learning. Comput. Hum. Behav. 26(3), 474–481 (2010)

    Article  Google Scholar 

  40. Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing. Academic Press, Cambridge (2011)

    MATH  Google Scholar 

  41. Yang, S., Yin, Z., Wang, Y., Zhang, W., Wang, Y., Zhang, J.: Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders. Comput. Biol. Med. 109, 159–170 (2019)

    Article  Google Scholar 

  42. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58(1), 1–17 (2015)

    Article  Google Scholar 

  43. Zhang, P., Wang, X., Chen, J., You, W., Zhang, W.: Spectral and temporal feature learning with two-stream neural networks for mental workload assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1149–1159 (2019)

    Article  Google Scholar 

  44. Zhang, Y., Liu, B., Ji, X., Huang, D.: Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process. Lett. 45(2), 365–378 (2017)

    Article  Google Scholar 

  45. Zhao, R., Yan, R., Wang, J., Mao, K.: Learning to monitor machine health with convolutional bi-directional LSTM networks. Sensors 17(2), 273 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjira Kingphai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kingphai, K., Moshfeghi, Y. (2021). On EEG Preprocessing Role in Deep Learning Effectiveness for Mental Workload Classification. In: Longo, L., Leva, M.C. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2021. Communications in Computer and Information Science, vol 1493. Springer, Cham. https://doi.org/10.1007/978-3-030-91408-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91408-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91407-3

  • Online ISBN: 978-3-030-91408-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics