Skip to main content

Drug-Target Interaction Prediction Based on Gaussian Interaction Profile and Information Entropy

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Abstract

Identifying drug-target interaction (DTI) is an important component of drug discovery and development. However, identifying DTI is a complex process that is time-consuming, costly, long, and often inefficient, with a low success rate, especially with wet-experimental methods. In contrast, numerous computational methods show great vitality and advantages. Among them, the precisely calculation of the drug-drug, target-target similarities are their basic requirements for accurate prediction of the DTI. In this paper, the improved Gaussian interaction profile similarity and the similarity fusion coefficient based on information entropy are proposed, which are fused with other similarities to enhance the performance of the DTI prediction methods. Experimental results on NR, GPCR, IC, Enzyme, all 4 benchmark datasets show that the improved similarity enhances the prediction performance of all six comparison methods.

Supported by the National Natural Science Foundation of China (No. 62002227,62031003) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY20F020011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, W.J., Balius, T.E., Mukherjee, S., et al.: Dock 6: impact of new features and current docking performance. J. Comput. Chem. 36(15), 1132–1156 (2015)

    Article  CAS  Google Scholar 

  2. Buza, Krisztian, Peska, Ladislav: ALADIN: a new approach for drug–target interaction prediction. In: Ceci, Michelangelo, Hollmén, Jaakko, Todorovski, Ljupčo, Vens, Celine, Džeroski, Sa.šo (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 322–337. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_20

    Chapter  Google Scholar 

  3. Chen, R., Liu, X., Jin, S., et al.: Machine learning for drug-target interaction prediction. Molecules 23(9), 2208 (2018)

    Article  Google Scholar 

  4. Chen, X., Yan, C.C., Zhang, X., et al.: Drug-target interaction prediction: databases, web servers and computational models. Brief. Bioinform. 17(4), 696–712 (2016)

    Article  CAS  Google Scholar 

  5. Cheng, T., Hao, M., Takeda, T., et al.: Large-scale prediction of drug-target interaction: a data-centric review. AAPS J. 19(5), 1264–1275 (2017)

    Article  CAS  Google Scholar 

  6. Chu, Y., Kaushik, A.C., Wang, X., et al.: DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Brief. Bioinform. 22(1), 451–462 (2021)

    Article  Google Scholar 

  7. Dickson, M., Gagnon, J.P.: Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discovery 3(5), 417–429 (2004)

    Article  CAS  Google Scholar 

  8. Ding, H., Takigawa, I., Mamitsuka, H., et al.: Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief. Bioinform. 15(5), 734–747 (2014)

    Article  Google Scholar 

  9. Ding, Y., Tang, J., Guo, F.: Identification of drug-target interactions via fuzzy bipartite local model. Neural Comput. Appl. 32, 10303–10319 (2020)

    Article  Google Scholar 

  10. Gorbalenya, A.E.: Severe acute respiratory syndrome-related coronavirus-the species and its viruses, a statement of the coronavirus study group. BioRxiv online (2020). https://doi.org/10.1101/2020.02.07.937862

    Article  Google Scholar 

  11. Hao, M., Wang, Y., Bryant, S.H.: Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique. Anal. Chim. Acta 909, 41–50 (2016)

    Article  CAS  Google Scholar 

  12. He, Z., Zhang, J., Shi, X.H., et al.: Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 5(3), e9603 (2010)

    Google Scholar 

  13. Jain, E., Bairoch, A., Duvaud, S., et al.: Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinform. 10, 136 (2009)

    Article  Google Scholar 

  14. Keiser, M.J., Setola, V., Irwin, J.J., et al.: Predicting new molecular targets for known drugs. Nature 462(7270), 175–181 (2009)

    Article  CAS  Google Scholar 

  15. Kuhn, M., Campillos, M., Letunic, I., et al.: A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6(1), 343 (2010)

    Article  Google Scholar 

  16. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Google Scholar 

  17. Liu, B., Pliakos, K., Vens, C., Tsoumakas, G.: Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery. Appl. Intell. 1–23 (2021). https://doi.org/10.1007/s10489-021-02495-z

  18. Liu, H., Zhang, W., Nie, L., et al.: Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinformat. 20, 645 (2019)

    Article  CAS  Google Scholar 

  19. Liu, Y., Wu, M., Miao, C., Zhao, P., Li, X.L.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Computat. Biol. 12(2), e1004760 (2016)

    Google Scholar 

  20. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S.R., et al.: A review of network-based approaches to drug repositioning. Brief. Bioinform. 19(5), 878–892 (2018)

    Article  Google Scholar 

  21. Luo, H., Wang, J., Li, M., et al.: Drug repositioning based on comprehensive similarity measures and Bi-random walk algorithm. Bioinformatics 32(17), 2664–2671 (2016)

    Article  CAS  Google Scholar 

  22. Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

    Article  CAS  Google Scholar 

  23. Morris, G.M., Huey, R., Lindstrom, W., et al.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)

    Article  CAS  Google Scholar 

  24. Paul, S.M., Mytelka, D.S., Dunwiddie, C.T., et al.: How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Disc. 9(3), 203–214 (2010)

    Article  CAS  Google Scholar 

  25. Perkins, R., Fang, H., Tong, W., et al.: Quantitative structure-activity relationship methods: perspectives on drug discovery and toxicology. Environ. Toxicol. Chem. 22(8), 1666–1679 (2003)

    Article  CAS  Google Scholar 

  26. Pliakos, K., Vens, C., Tsoumakas, G.: Predicting drug-target interactions with multi-label classification and label partitioning. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(4), 1596–1607 (2021)

    Article  CAS  Google Scholar 

  27. Schrynemackers, M., Küffner, R., Geurts, P.: On protocols and measures for the validation of supervised methods for the inference of biological networks. Front. Genet. 4, 262 (2013)

    Article  Google Scholar 

  28. Shi, J.Y., Yiu, S.M., Li, Y., et al.: Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering. Methods 83, 98–104 (2015)

    Article  CAS  Google Scholar 

  29. Sydow, D., Burggraaff, L., Szengel, A., et al.: Advances and challenges in computational target prediction. J. Chem. Inf. Model. 59(5), 1728–1742 (2019)

    Article  CAS  Google Scholar 

  30. Wang, M., Cao, R., Zhang, L., et al.: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCov) in vitro. Cell Res. 30, 269–271 (2020)

    Article  CAS  Google Scholar 

  31. Weininger, D.: Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Google Scholar 

  32. Wu, F., Zhao, S., Yu, B., et al.: A new coronavirus associated with human respiratory disease in China. Nature 579(7798), 265–269 (2020)

    Article  CAS  Google Scholar 

  33. Wu, Z., Li, W., Liu, G., et al.: Network-based methods for prediction of drug-target interactions. Front. Pharmacol. 9, 1134 (2018)

    Article  CAS  Google Scholar 

  34. Xia, L.Y., Yang, Z.Y., Zhang, H., et al.: Improved prediction of drug-target interactions using self-paced learning with collaborative matrix factorization. J. Chem. Inf. Model. 59(7), 3340–3351 (2019)

    Article  CAS  Google Scholar 

  35. Xu, X., Chen, P., Wang, J., et al.: Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci. 63(3), 457–460 (2020)

    Article  CAS  Google Scholar 

  36. Yamanishi, Y., Araki, M., Gutteridge, A., et al.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    Article  CAS  Google Scholar 

  37. Yu, D., Liu, G., Zhao, N., et al.: FPSC-DTI: drug-target interaction prediction based on feature projection fuzzy classification and super cluster fusion. Molecular Omics 16(6), 583–591 (2020)

    Article  CAS  Google Scholar 

  38. Zhang, W., Liu, F., Luo, L., et al.: Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinformat. 16, 365 (2015)

    Article  Google Scholar 

  39. Zhou, L., Li, Z., Yang, J., et al.: Revealing drug-target interactions with computational models and algorithms. Molecules 24(9), 1714 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Yao, S., Ding, Z., Guo, M., Yu, D., Hu, K. (2021). Drug-Target Interaction Prediction Based on Gaussian Interaction Profile and Information Entropy. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics