Skip to main content

A New Deep Learning Training Scheme: Application to Biomedical Data

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13064))

Included in the following conference series:

  • 1760 Accesses

Abstract

Improving the performance of deep learning algorithms and reducing the cost of training time are ongoing challenges in bioinformatics. Some strategies are proposed to address these challenges such as changing learning rate and early stopping technique together with cross-validation training. These approaches still take plenty of training time and have some bottlenecks in improving performance under traditional cross-validation training settings. In this study, we propose a successive cross-validation training strategy for biomedical data and develop a new training scheme to improve performance with reduced training time using weight transfer learning. We design and perform multiple experiments with three different domains to evaluate the proposed training scheme. The deep learning models include DeepDTA for drug-target affinity prediction, RAAU-Net for glioma segmentation, and DeepCaps for image classification. Experimental results demonstrate that our proposed training scheme not only outperforms the existing scheme on both performance and efficiency in bioinformatics but also can be easily generalized to a variety of intelligent tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., et al.: Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  2. Berrar, D.: Cross-validation. In: Ranganathan, S., Gribskov, M., Nakai, K., Schnbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 542–545. Academic Press, Oxford (2019)

    Google Scholar 

  3. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Article  CAS  Google Scholar 

  4. Cheng, J., Liu, J., Liu, L., Pan, Y., Wang, J.: Multi-level glioma segmentation using 3D U-Net combined attention mechanism with atrous convolution. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1031–1036. IEEE (2019)

    Google Scholar 

  5. Cheng, J., et al.: Automated diagnosis of COVID-19 using deep supervised autoencoder with multi-view features from CT images. IEEE/ACM Trans. Comput. Biol. Bioinf. (2021). https://doi.org/10.1109/TCBB.2021.3102584

    Article  Google Scholar 

  6. Cheng, J., et al.: Prediction of glioma grade using intratumoral and peritumoral radiomic features from multiparametric MRI images. IEEE/ACM Trans. Comput. Biol. Bioinf. (2020). https://doi.org/10.1109/TCBB.2020.3033538

    Article  Google Scholar 

  7. Cheng, J., et al.: Multimodal disentangled variational autoencoder with game theoretic interpretability for glioma grading. IEEE J. Biomed. Health Inform. (2021). https://doi.org/10.1109/JBHI.2021.3095476

    Article  PubMed  Google Scholar 

  8. Deepak, S., Ameer, P.: Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 111, 103345 (2019)

    Article  CAS  Google Scholar 

  9. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ayed, I.B.: HyperDense-Net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 38(5), 1116–1126 (2018)

    Article  Google Scholar 

  10. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  CAS  Google Scholar 

  11. Iesmantas, T., Alzbutas, R.: Convolutional capsule network for classification of breast cancer histology images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 853–860. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_97

    Chapter  Google Scholar 

  12. Kooi, T., et al.: Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

    Article  Google Scholar 

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  CAS  Google Scholar 

  15. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs. http://yann.lecun.com/exdb/mnist. Accessed Feb 2010

  16. Lee, I., Keum, J., Nam, H.: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput. Biol. 15(6), e1007129 (2019)

    Article  CAS  Google Scholar 

  17. Liu, J., Zeng, D., Guo, R., Lu, M., Wu, F.X., Wang, J.: MMHGE: detecting mild cognitive impairment based on multi-atlas multi-view hybrid graph convolutional networks and ensemble learning. Clust. Comput. 24(1), 103–113 (2021)

    Article  Google Scholar 

  18. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018)

    Article  Google Scholar 

  19. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R.: DeepCaps: going deeper with capsule networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10725–10733 (2019)

    Google Scholar 

  20. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  21. Tang, J., et al.: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J. Chem. Inf. Model. 54(3), 735–743 (2014)

    Article  CAS  Google Scholar 

  22. Wang, Y., Liu, J., Xiang, Y., Wang, J., Chen, Q., Chong, J.: MAGE: automatic diagnosis of autism spectrum disorders using multi-atlas graph convolutional networks and ensemble learning. Neurocomputing (2021). https://doi.org/10.1016/j.neucom.2020.06.152

    Article  PubMed  Google Scholar 

  23. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  24. Yang, Y., et al.: Glioma grading on conventional MR images: a deep learning study with transfer learning. Front. Neurosci. 12, 804 (2018)

    Article  Google Scholar 

  25. Yuan, Y., Bar-Joseph, Z.: Deep learning for inferring gene relationships from single-cell expression data. Proc. Natl. Acad. Sci. 116(52), 27151–27158 (2019)

    Article  CAS  Google Scholar 

  26. Zhang, J., Xie, Y., Wu, Q., Xia, Y.: Medical image classification using synergic deep learning. Med. Image Anal. 54, 10–19 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded partially by the National Natural Science Foundation of China under Grant No. 61802442, No. 61877059, the Natural Science Foundation of Hunan Province under Grant No. 2019JJ50775, the 111 Project (No. B18059), the Hunan Provincial Science and Technology Program (No. 2018WK4001), and the Hunan Provincial Science and Technology Innovation Leading Plan (No. 2020GK2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J., Zhao, Q., Xu, L., Liu, J. (2021). A New Deep Learning Training Scheme: Application to Biomedical Data. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics