Skip to main content

Joint CC and Bimax: A Biclustering Method for Single-Cell RNA-Seq Data Analysis

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Abstract

One of the important aims of analyzing single-cell RNA sequencing (scRNA-seq) data is to discovery new cell subtypes by clustering. For the scRNA-seq data, it is obvious that lots of genes have similar behavior under the different conditions (cells). Traditional clustering algorithms could not obtain high-quality cluster on scRNA-seq data. However, the biclustering algorithm has begun a more powerful data mining tool, which can cluster genes and conditions (cells) simultaneously. In this paper, we propose a novel biclustering algorithm named JCB: Joint CC and BIMAX. The algorithm is based on the two classic biclustering algorithms: Cheng and Church’s algorithm (CC) and Binary Inclusion-Maximal biclustering algorithm (Bimax). The main idea of the JCB method is that it joints the “mean squared residual (MSR)” proposed by CC with the model of BIMAX. It gets the biclusters by iterating on rows and columns of the data matrix with the “MSR”, and it also benefits the advantage of simply model from Bimax. We evaluate the proposed method by carrying out extensive experiments on three scRNA-seq datasets. The JCB method is used to compete with six other bi-clustering algorithms. The experimental results show that the proposed method outperforms the others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam, S., et al.: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Meth. 11(2), 163 (2014)

    Article  CAS  Google Scholar 

  2. Ciortan, M., Defrance, M.: Contrastive self-supervised clustering of scRNA-seq data. BMC Bioinform. 22(1), 1–27 (2021)

    Article  Google Scholar 

  3. Wang, C.Y., Gao, Y.-L., Liu, J.-X., Kong, X.-Z., Zheng, C.-H.: Single-cell RNA sequencing data clustering by low-rank subspace ensemble framework IEEE/ACM Trans. Comput. Biol. Bioinform. (2020)

    Google Scholar 

  4. Kim, J., Stanescu, D.E., Won, K.J.: CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. Nucleic Acids Res. 46(21), e124–e124 (2018)

    Article  Google Scholar 

  5. Hanafi, S., Palubeckis, G., Glover, F.: Bi-objective optimization of biclustering with binary data. Inf. Sci. 538, 444–466 (2020)

    Article  Google Scholar 

  6. Wang, H., et al.: Clustering by pattern similarity in large data sets. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data (2002)

    Google Scholar 

  7. Qin, J., et al.: Distributed $k$-means algorithm and fuzzy $c$-means algorithm for sensor networks based on multiagent consensus theory. IEEE Trans. Cybern. 47(3), 772–783 (2016)

    Article  Google Scholar 

  8. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  Google Scholar 

  9. Pontes, B., Giraldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)

    Article  Google Scholar 

  10. Padilha, V.A., Campello, R.J.G.B.: A systematic comparative evaluation of biclustering techniques. BMC Bioinform. 18(1), 55 (2017)

    Article  Google Scholar 

  11. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB 2000 (2000)

    Google Scholar 

  12. Ben-Dor, A., et al.: Discovering local structure in gene expression data: the order-preserving submatrix problem. In: Proceedings of the 6th Annual International Conference on Computational Biology (2002)

    Google Scholar 

  13. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis of large-scale gene expression data. Phys. Rev. E 67(3), 031902 (2003)

    Article  Google Scholar 

  14. Prelić, A., et al.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  15. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl 1), S136–S144 (2002)

    Article  Google Scholar 

  16. Deng, Q., et al.: Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167), 193–196 (2014)

    Article  CAS  Google Scholar 

  17. Li, G., et al.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37(15), e101–e101 (2009)

    Article  Google Scholar 

  18. Saber, H.B., Elloumi, M.: A comparative study of clustering and biclustering of microarray data. Int. J. Comput. Sci. Inf. Technol. 6(6), 93 (2014)

    Google Scholar 

  19. Pollen, A.A., et al.: Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32(10), 1053 (2014)

    Article  CAS  Google Scholar 

  20. Treutlein, B., et al.: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500), 371–375 (2014)

    Article  CAS  Google Scholar 

  21. Liu, J.X., Wang, C.Y., Gao, Y.L., et al.: Adaptive total-variation regularized low-rank representation for analyzing single-cell RNA-seq data. Interdiscip. Sci. Comput. Life Sci. 13, 476–489 (2021)

    Google Scholar 

  22. Buckland, M., Gey, F.: The relationship between recall and precision. J. Am. Soc. Inf. Sci. 45(1), 12–19 (1994)

    Article  Google Scholar 

  23. Cai, D., et al.: Non-negative matrix factorization on manifold. In: 2008 8th IEEE International Conference on Data Mining. IEEE (2008)

    Google Scholar 

  24. Varshavsky, R., Linial, M., Horn, D.: Compact: a comparative package for clustering assessment. In: Chen, G., Pan, Yi., Guo, M., Jian, Lu. (eds.) Parallel and Distributed Processing and Applications - ISPA 2005 Workshops, pp. 159–167. Springer, Heidelberg (2005). https://doi.org/10.1007/11576259_18

    Chapter  Google Scholar 

  25. Lipton, Z.C., Elkan, C., Naryanaswamy, B.: Optimal thresholding of classifiers to maximize F1 measure. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2014, Nancy, France, September 15–19, 2014. Proceedings, Part II, pp. 225–239. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_15

    Chapter  Google Scholar 

  26. de Castro, P.A., et al.: Applying biclustering to perform collaborative filtering. In: 7th International Conference on Intelligent Systems Design and Applications, ISDA 2007. IEEE (2007)

    Google Scholar 

  27. Hanczar, B., Nadif, M.: Precision-recall space to correct external indices for biclustering. In: International Conference on Machine Learning. PMLR (2013)

    Google Scholar 

  28. Verma, N.K., et al.: BIDEAL: a toolbox for bicluster analysis—generation, visualization and validation. SN Comput. Sci. 2(1), 1–15 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61702299, 61872220, 62172253.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, HM., Kong, XZ., Liu, JX., Wang, J., Yuan, SS., Dai, LY. (2021). Joint CC and Bimax: A Biclustering Method for Single-Cell RNA-Seq Data Analysis. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics