Skip to main content

PickerOptimizer: A Deep Learning-Based Particle Optimizer for Cryo-Electron Microscopy Particle-Picking Algorithms

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13064))

Included in the following conference series:

Abstract

Cryo-electron microscopy single particle analysis requires tens of thousands of particle projections for the structural determination of macromolecules. To free researchers from laborious particle picking work, a number of fully automatic and semi-automatic particle picking approaches have been proposed. However, due to the presence of carbon and different types of high-contrast contaminations, these approaches tend to select a non-negligible number of false-positive particles, which affects the subsequent 3D reconstruction.

In order to overcome this limitation, we present a deep learning-based particle pruning algorithm, PickerOptimizer, to separate erroneously picked particles from the correct ones. PickerOptimizer trained a convolutional neural network based on transfer learning techniques, where the pre-trained model maintains strong generalization ability and can be quickly adapted to the characteristics of the new dataset. Here, we build the first cryo-EM dataset for image classification pre-training which contains particles, carbon regions and high-contrast contaminations from 14 different EMPIAR entries. The PickerOptimizer works by fine-tuning the pre-trained model with only a few manually labeled samples from new datasets. The experiments carried out on several public datasets show that PickerOptimizer is a very efficient approach for particle post-processing, achieving F1 scores above 90%. Moreover, the method is able to identify false-positive particles more accurately than other pruning strategies. A case study further shows that PickerOptimizer can improve conventional particle pickers and complement deep-learning-based ones. The Source code, pre-trained models and datasets are available at https://github.com/LiHongjia-ict/PickerOptimizer/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee, S., et al.: 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351(6275), 871–875 (2016)

    Article  CAS  Google Scholar 

  2. Zhang, Y., et al.: Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546(7657), 248–253 (2017)

    Article  CAS  Google Scholar 

  3. Scheres, S.H.W.: Semi-automated selection of cryo-EM particles in RELION-13. J. Struct. Biol. 189(2), 114–122 (2015)

    Article  CAS  Google Scholar 

  4. Fa Zhang, Yu., Chen, F.R., Wang, X., Liu, Z., Wan, X.: A two-phase improved correlation method for automatic particle selection in cryo-EM. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(2), 316–325 (2015)

    Article  Google Scholar 

  5. Zhu, Y., et al.: Automatic particle selection: results of a comparative study. J. Struct. Biol. 145(1–2), 3–14 (2004)

    Article  CAS  Google Scholar 

  6. Wagner, T., et al.: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2(1), 1–13 (2019)

    Article  Google Scholar 

  7. Zhang, J., Zihao Wang, Yu., Chen, R.H., Liu, Z., Sun, F., Zhang, F.: PIXER: an automated particle-selection method based on segmentation using a deep neural network. BMC Bioinformatics 20(1), 1–14 (2019)

    Article  Google Scholar 

  8. Bepler, T., et al.: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16(11), 1153–1160 (2019)

    Article  CAS  Google Scholar 

  9. Lander, G.C., et al.: Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166(1), 95–102 (2009)

    Article  CAS  Google Scholar 

  10. Berndsen, Z., Bowman, C., Jang, H., Ward, A.B.: EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing. Bioinformatics 33(23), 3824–3826 (2017)

    Article  CAS  Google Scholar 

  11. Norousi, R., et al.: Automatic post-picking using MAPPOS improves particle image detection from cryo-EM micrographs. J. Struct. Biol. 182(2), 59–66 (2013)

    Article  CAS  Google Scholar 

  12. Sanchez-Garcia, R., Segura, J., Maluenda, D., Carazo, J.M., Sorzano, C.O.S.: Deep consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy. IUCrJ 5(6), 854–865 (2018)

    Article  CAS  Google Scholar 

  13. Sanchez-Garcia, R., Segura, J., Maluenda, D., Sorzano, C.O.S., Carazo, J.M.: Micrographcleaner: a Python package for cryo-EM micrograph cleaning using deep learning. J. Struct. Biol. 210(3), 107498 (2020)

    Article  Google Scholar 

  14. Iudin, A., Korir, P.K., Salavert-Torres, J., Kleywegt, G.J., Patwardhan, A.: EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13(5), 387–388 (2016)

    Article  CAS  Google Scholar 

  15. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  16. Nicholson, D., Edwards, T.A., O’Neill, A.J., Ranson, N.A.: Structure of the 70S ribosome from the human pathogen acinetobacter Baumannii in complex with clinically relevant antibiotics. Structure 28(10), 1087–1100 (2020)

    Article  CAS  Google Scholar 

  17. Gao, Y., Cao, E., Julius, D., Cheng, Y.: TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607), 347–351 (2016)

    Article  CAS  Google Scholar 

  18. Cash, J.N., et al.: Cryo-electron microscopy structure and analysis of the P-REX1-G\(\beta \)\(\gamma \) signaling scaffold. Sci. Adv. 5(10), eaax8855 (2019)

    Article  CAS  Google Scholar 

  19. Liu, Y., et al.: Fact caught in the act of manipulating the nucleosome. Nature 577(7790), 426–431 (2020)

    Article  CAS  Google Scholar 

  20. Mashtalir, N., et al.: A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183(3), 802–817 (2020)

    Article  CAS  Google Scholar 

  21. Jinke, G., et al.: Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 364(6445), 1068–1075 (2019)

    Article  Google Scholar 

  22. Singh, K., et al.: Discovery of a regulatory subunit of the yeast fatty acid synthase. Cell 180(6), 1130–1143 (2020)

    Article  CAS  Google Scholar 

  23. Schoebel, S., et al.: Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548(7667), 352–355 (2017)

    Article  CAS  Google Scholar 

  24. Isom, G.L., Coudray, N., MacRae, M.R., McManus, C.T., Ekiert, D.C., Bhabha, G.: LetB structure reveals a tunnel for lipid transport across the bacterial envelope. Cell 181(3), 653–664 (2020)

    Article  CAS  Google Scholar 

  25. Tan, Y.Z., et al.: Cryo-EM structures and regulation of arabinofuranosyltransferase AftD from mycobacteria. Mol. Cell 78(4), 683–699 (2020)

    Article  CAS  Google Scholar 

  26. Zhang, L., et al.: Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350(6259), 404–409 (2015)

    Article  CAS  Google Scholar 

  27. Tan, Y.Z., et al.: Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14(8), 793–796 (2017)

    Article  CAS  Google Scholar 

  28. Fischer, N., et al.: The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540(7631), 80–85 (2016)

    Article  CAS  Google Scholar 

  29. Gao, S., Han, R., Zeng, X., Liu, Z., Xu, M., Zhang, F.: Macromolecules structural classification with a 3D dilated dense network in cryo-electron tomography. IEEE/ACM Trans. Comput. Biol. Bioinform. (2021)

    Google Scholar 

  30. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  32. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

Download references

Acknowledgments

The research is supported by the National Key Research and Development Program of China (No. 2017YFA0504702), the NSFC projects grants (61932018, 62072441 and 62072280), and Beijing Municipal Natural Science Foundation Grant (No. L182053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Chen, G., Gao, S., Li, J., Zhang, F. (2021). PickerOptimizer: A Deep Learning-Based Particle Optimizer for Cryo-Electron Microscopy Particle-Picking Algorithms. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics