Skip to main content

Diabetic Retinopathy Grading Base on Contrastive Learning and Semi-supervised Learning

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13064))

Included in the following conference series:

Abstract

The diabetic retinopathy (DR) detection based on deep learning is a powerful tool for early screening of DR. Although several automatic DR grading algorithms have been proposed, their performance is still limited by the characteristics of DR lesions and grading criteria, and coarse-grained image-level label. In this paper, we propose a novel approach based on contrastive learning and semi-supervised learning to break through these limitations. We first employ contrastive learning to solve the problem of inter-class and intra-class differences in DR grading. This method enables the model to identify the unique lesion features on each DR fundus color image and strengthen the feature expression for different kinds of lesions. Then we use a small amount of open-source pixel-level annotation dataset to train the lesion segmentation model, in order to provide fine-grained pseudo-label for image-level fundus images. Meanwhile, we design a pseudo-label attention structure and deep supervision method, to increase the attention of the model to lesion features and improve the grading performance. Experiments on the open-source DR grading datasets EyePACS, Messidior, IDRiD, and FGADR can prove the effectiveness of our proposed method and show the results superior to the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaggle diabetic retinopathy detection competition. https://www.kaggle.com/c/diabetic-retinopathy-detection

  2. The leaderboard of idrid competition. https://idrid.grand-challenge.org/Leaderboard/

  3. Bajwa, M.N., Taniguchi, Y., Malik, M.I., Neumeier, W., Dengel, A., Ahmed, S.: Combining fine- and coarse-grained classifiers for diabetic retinopathy detection. In: Zheng, Y., Williams, B.M., Chen, K. (eds.) MIUA 2019. CCIS, vol. 1065, pp. 242–253. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39343-4_21

    Chapter  Google Scholar 

  4. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners (2020). arXiv preprint arXiv:2006.10029

  7. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning (2020). arXiv preprint arXiv:2003.04297

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  9. Decencière, E., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  Google Scholar 

  10. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  11. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations (2018). arXiv preprint arXiv:1803.07728

  12. He, A., Li, T., Li, N., Wang, K., Fu, H.: Cabnet: category attention block for imbalanced diabetic retinopathy grading. IEEE Trans. Med. Imaging 40(1), 143–153 (2020)

    Article  Google Scholar 

  13. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  16. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020)

    Article  Google Scholar 

  17. Lam, C., Yu, C., Huang, L., Rubin, D.: Retinal lesion detection with deep learning using image patches. Invest. Ophthalmol. Vis. Sci. 59(1), 590–596 (2018)

    Article  Google Scholar 

  18. Lin, Z., et al.: A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_9

    Chapter  Google Scholar 

  19. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  20. Mitani, A., et al.: Detection of anaemia from retinal fundus images via deep learning. Nat. Biomed. Eng. 4(1), 18–27 (2020)

    Article  Google Scholar 

  21. Porwal, P., et al.: Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)

    Article  Google Scholar 

  22. Sánchez, C.I., Niemeijer, M., Dumitrescu, A.V., Suttorp-Schulten, M.S., Abramoff, M.D., van Ginneken, B.: Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Invest. Ophthalmol. Vis. Sci. 52(7), 4866–4871 (2011)

    Article  Google Scholar 

  23. van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109(2), 373–440 (2019). https://doi.org/10.1007/s10994-019-05855-6

    Article  Google Scholar 

  24. Vo, H.H., Verma, A.: New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid color space. In: 2016 IEEE International Symposium on Multimedia (ISM), pp. 209–215. IEEE (2016)

    Google Scholar 

  25. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    Chapter  Google Scholar 

  26. Zhao, H., Li, H., Maurer-Stroh, S., Guo, Y., Deng, Q., Cheng, L.: Supervised segmentation of un-annotated retinal fundus images by synthesis. IEEE Trans. Med. Imaging 38(1), 46–56 (2018)

    Article  Google Scholar 

  27. Zhou, Y., ET AL.: Collaborative learning of semi-supervised segmentation and classification for medical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2079–2088 (2019)

    Google Scholar 

  28. Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, Y., Wang, X., Pan, J., Zhou, Z. (2021). Diabetic Retinopathy Grading Base on Contrastive Learning and Semi-supervised Learning. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics