Skip to main content

Predicting Microbe-Disease Association via Tripartite Network and Relation Graph Convolutional Network

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13064))

Included in the following conference series:

  • 1808 Accesses

Abstract

Many evidences show that microbes play vital roles in human health and diseases. Thus, predicting microbe-disease associations is helpful for disease prevention. In this study, we propose a predictive model called TNRGCN for microbe-disease associations based on Tripartite Network and Relation Graph Convolutional Network (RGCN). Firstly, we construct a microbe-disease-drug tripartite network through data processing from four databases. Secondly, we calculate similarity networks for microbes, diseases and drugs via microbe function similarity, disease semantic similarity and Gaussian interaction profile kernel similarity, respectively. Then, we utilize Principal Component Analysis (PCA) on similarity networks to extract main features of nodes in the tripartite network and input them as initial features to RGCN. Finally, according to the tripartite network and initial features, we apply two-layer RGCN to predict microbe-disease associations. Compared with other methods, TNRGCN achieves a good performance in cross validation. Meanwhile, case studies for diseases demonstrate TNRGCN has a good performance for predicting potential microbe-disease associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holmes, E., Wijeyesekera, A., Taylor-Robinson, S.D., et al.: The promise of metabolic phenotyping in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12(8), 458–471 (2015)

    Article  Google Scholar 

  2. Sommer, F., Backhed, F.: The gut microbiota - masters of host development and physiology. Nat. Rev. Microbiol. 11(4), 227–238 (2013)

    Article  CAS  Google Scholar 

  3. Gollwitzer, E.S., Saglani, S., Trompette, A., et al.: Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20(6), 642–647 (2014)

    Article  CAS  Google Scholar 

  4. Gill, S.R., Pop, M., DeBoy, R.T., et al.: Metagenomic analysis of the human distal gut microbiome. Science 312(5778), 1355–1359 (2006)

    Article  CAS  Google Scholar 

  5. Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., et al.: Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22(2), 320–331 (2015)

    Article  CAS  Google Scholar 

  6. Cross, M.L.: Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol. Med. Microbiol. 34(4), 245–253 (2002)

    Article  CAS  Google Scholar 

  7. Dethlefsen, L., McFall-Ngai, M., Relman, D.A.: An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449(7164), 811–818 (2007)

    Article  CAS  Google Scholar 

  8. Yan, Q., Gu, Y., Li, X., et al.: Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 7, 381 (2017)

    Article  Google Scholar 

  9. Rashid, T., Ebringer, A., Wilson, C.: The role of Klebsiella in Crohn’s disease with a potential for the use of antimicrobial measures. Int. J. Rheumatol. 2013, 610393 (2013)

    Article  Google Scholar 

  10. Ma, W., Zhang, L., Zeng, P., et al.: An analysis of human microbe-disease associations. Brief. Bioinform. 18(1), 85–97 (2017)

    Article  Google Scholar 

  11. Janssens, Y., Nielandt, J., Bronselaer, A., et al.: Disbiome database: linking the microbiome to disease. BMC Microbiol. 18(1), 50 (2018)

    Article  Google Scholar 

  12. Chen, X., Huang, Y.A., You, Z.H., et al.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5), 733–739 (2017)

    CAS  PubMed  Google Scholar 

  13. Li, H., Wang, Y.Q., Jiang, J.W., et al.: A Novel human microbe-disease association prediction method based on the bidirectional weighted network. Front. Microbiol. 10, 676 (2019)

    Article  Google Scholar 

  14. Wu, C.Y., Gao, R., Zhang, D.L., et al.: PRWHMDA: human microbe-disease association prediction by random walk on the heterogeneous network with PSO. Int. J. Biol. Sci. 14(8), 849–857 (2018)

    Article  CAS  Google Scholar 

  15. Qu, J., Zhao, Y., Yin, J.: Identification and analysis of human microbe-disease associations by matrix decomposition and label propagation. Front. Microbiol. 10, 291 (2019)

    Article  Google Scholar 

  16. Long, Y., Luo, J., Zhang, Y., et al.: Predicting human microbe-disease associations via graph attention networks with inductive matrix completion. Brief. Bioinf. 22(3), bbaa146 (2021)

    Google Scholar 

  17. Tang, X., Luo, J., Shen, C., et al.: Multi-view multichannel attention graph convolutional network for miRNA-disease association prediction. Brief. Bioinf. (2021). https://doi.org/10.1093/bib/bbab174

  18. Liu, L., Mamitsuka, H., Zhu, S.: HPOFiller: identifying missing protein-phenotype associations by graph convolutional network. Bioinformatics (2021). https://doi.org/10.1093/bioinformatics/btab224

  19. Lei, X., Tie, J., Pan, Y.: Inferring metabolite-disease association using graph convolutional networks. IEEE/ACM Trans. Comput. Biol. Bioinf. (99), 1 (2021)

    Google Scholar 

  20. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  21. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 88(3), 265–266 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wen, Z., Weitai, Y., Xiaoting, L., et al.: The bi-direction similarity integration method for predicting microbe-disease associations. IEEE Access 6, 38052–38061 (2018)

    Article  Google Scholar 

  23. van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27(21), 3036–3043 (2011)

    Article  Google Scholar 

  24. Yan, C., Duan, G.H., Wu, F.X., et al.: BRWMDA: Predicting microbe-disease associations based on similarities and bi-random walk on disease and microbe networks. IEEE-ACM Trans. Comput. Biol. Bioinf. 17(5), 1595–1604 (2020)

    CAS  Google Scholar 

  25. Zou, S., Zhang, J.P., Zhang, Z.P.: A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network. PLoS ONE 12(9), e0184394 (2017)

    Google Scholar 

  26. Luo, J.W., Long, Y.H.: NTSHMDA: prediction of human microbe-disease association based on random walk by integrating network topological similarity. IEEE-ACM Trans. Comput. Biol. Bioinf. 17(4), 1341–1351 (2020)

    CAS  Google Scholar 

  27. Li, S., Xie, M., Liu, X.: A novel approach based on bipartite network recommendation and KATZ model to predict potential micro-disease associations. Front. Genet. 10, 1147 (2019)

    Article  Google Scholar 

  28. Bao, W., Jiang, Z., Huang, D.S.: Novel human microbe-disease association prediction using network consistency projection. BMC Bioinf. 18(S16), 543 (2017)

    Article  Google Scholar 

  29. Huang, Z.A., Chen, X., Zhu, Z.X., et al.: PBHMDA: path-based human microbe-disease association prediction. Front. Microbiol. 8, 2560 (2017)

    Article  Google Scholar 

  30. Yin, M.-M., Liu, J.-X., Gao, Y.-L., et al.: NCPLP: a novel approach for predicting microbe-associated diseases with network consistency projection and label propagation. IEEE Trans. Cybern. (99), 1–9 (2020)

    Google Scholar 

  31. Sung, H., Ferlay, J., Siegel, R.L., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Article  Google Scholar 

  32. Ekanayake, A., Madegedara, D., Chandrasekharan, V., Magana-Arachchi, D.: Respiratory bacterial microbiota and individual bacterial variability in lung cancer and bronchiectasis patients. Indian J. Microbiol. 60(2), 196–205 (2019). https://doi.org/10.1007/s12088-019-00850-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, M., Zhou, H., Xu, S.S., et al.: The gut microbiome can be used to predict the gastrointestinal response and efficacy of lung cancer patients undergoing chemotherapy. Ann. Palliative Med. 9(6), 4211–4227 (2020)

    Article  Google Scholar 

  34. Cheng, C., Wang, Z., Wang, J., et al.: Characterization of the lung microbiome and exploration of potential bacterial biomarkers for lung cancer. Transl. Lung Cancer Res. 9(3), 693–704 (2020)

    Article  CAS  Google Scholar 

  35. Lee, S.H., Sung, J.Y., Yong, D., et al.: Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102, 89–95 (2016)

    Article  Google Scholar 

  36. Bello, S., Vengoechea, J.J., Ponce-Alonso, M., et al.: Core microbiota in central lung cancer with streptococcal enrichment as a possible diagnostic marker. Arch. Bronconeumol. (Engl. Ed) (2020). https://doi.org/10.1016/j.arbres.2020.05.034

    Article  Google Scholar 

  37. Zheng, L., Xu, J., Sai, B., et al.: Microbiome related cytotoxically active CD8+ TIL are inversely associated with lung cancer development. Front Oncol 10, 531131 (2020)

    Article  Google Scholar 

  38. Cole, T.J., Bellizzi, M.C., Flegal, K.M., et al.: Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244), 1240–1243 (2000)

    Article  CAS  Google Scholar 

  39. Petersen, C., Bell, R., Kiag, K.A., et al.: T cell-mediated regulation of the microbiota protects against obesity. Science 365(6451), 340 (2019)

    Article  Google Scholar 

  40. Gao, R.Y., Zhu, C.L., Li, H., et al.: Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity 26(2), 351–361 (2018)

    Article  CAS  Google Scholar 

  41. Andoh, A., Nishida, A., Takahashi, K., et al.: Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J. Clin. Biochem. Nutr. 59(1), 65–70 (2016)

    Article  CAS  Google Scholar 

  42. Jie, Z., Yu, X., Liu, Y., et al.: The baseline gut microbiota directs dieting-induced weight loss trajectories. Gastroenterology 160(6), 2029-2042.e2016 (2021)

    Article  Google Scholar 

  43. Zeigler, C.C., Persson, G.R., Wondimu, B., et al.: Microbiota in the oral subgingival biofilm is associated with obesity in adolescence. Obesity (Silver Spring) 20(1), 157–164 (2012)

    Article  CAS  Google Scholar 

  44. Moreno-Indias, I., Sanchez-Alcoholado, L., Perez-Martinez, P., et al.: Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct. 7(4), 1775–1787 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

We thank the financial support from National Natural Science Foundation of China under Grant Nos. 61972451, 61902230, and the Fundamental Research Funds for the Central Universities of China under Grant No. GK201901010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Lei, X., Pan, Y. (2021). Predicting Microbe-Disease Association via Tripartite Network and Relation Graph Convolutional Network. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91415-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91414-1

  • Online ISBN: 978-3-030-91415-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics