Skip to main content

Temporal Authorization Graphs: Pros, Cons and Limits

  • Conference paper
  • First Online:
Smart Objects and Technologies for Social Good (GOODTECHS 2021)

Abstract

As more private data is entering the web, defining authorization about its access is crucial for privacy protection. This paper proposes a policy language that leverages SPARQL expressiveness and popularity for flexible access control management and enforces the protection using temporal graphs. The temporal graphs are created during the authentication phase and are cached for further usage. They enable design-time policy testing and debugging, which is necessary for correctness guarantee.

The security never comes with convenience, and this paper examines the environments in which the temporal graphs are suitable. Based on the evaluation results, an approximated function is defined for suitability determination based on the expected temporal graph size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper we will use the term requester instead of subject, since it beater describes the actor that is interacting with the system.

  2. 2.

    In this description the partial data filter function \(\varphi \) has superscript + or − if it is part of a policy with enforcement method \(\epsilon _+\) and \(\epsilon _-\), correspondingly.

  3. 3.

    http://github.com/ristes/univ-datasets/ont/policy.owl.

  4. 4.

    http://github.com/ristes/univ-datasets/ont/intent.owl.

  5. 5.

    http://jena.apache.org.

  6. 6.

    The variable names ?s, ?p and ?o are chosen for convenience, while in the implementation their names are randomly generated.

  7. 7.

    The term unifies the IRI and literal elements.

  8. 8.

    http://github.com/ristes/univ-datasets/ont/univ.owl.

  9. 9.

    http://github.com/ristes/univ-datasets.

References

  1. Abel, F., De Coi, J.L., Henze, N., Koesling, A.W., Krause, D., Olmedilla, D.: Enabling advanced and context-dependent access control in RDF stores. In: Aberer, K., et al. (eds.) The Semantic Web, ASWC/ISWC -2007. LNCS, vol. 4825, pp. 1–14. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_1

  2. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Tobarra. L.: Formal analysis of saml 2.0 web browser single sign-on: breaking the saml-based single sign-on for google apps. In: Proceedings of the 6th ACM Workshop on Formal Methods in Security Engineering, pp 1–10. ACM (2008)

    Google Scholar 

  3. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  4. Bizer, C., Heath, T., Berners-Lee. T.: Linked data-the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227 (2009)

    Google Scholar 

  5. Costabello, L., Villata, S., Rodriguez Rocha, O., Gandon, F.: Access control for HTTP operations on linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) The Semantic Web: Semantics and Big Data, ESWC 2013. LNCS, vol. 7882, pp. 185–199. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_13

  6. Dietzold, S., Auer, S.: Access control on RDF triple stores from a semantic wiki perspective. In: ESWC Workshop on Scripting for the Semantic Web. Citeseer (2006)

    Google Scholar 

  7. Flouris, G., Fundulaki, I., Michou, M., Antoniou, G.: Controlling access to RDF graphs. In: Berre, A.J., Gómez-Pérez, A., Tutschku, Kurt, Fensel, D. (eds.) Future Internet - FIS 2010, FIS 2010. LNCS, vol. 6369, pp. 107–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15877-3_12

  8. Franzoni, S., Mazzoleni, P., Valtolina, S., Bertino, E.: Towards a fine-grained access control model and mechanisms for semantic databases. In: IEEE International Conference on Web Services (ICWS 2007), pp. 993–1000. IEEE (2007)

    Google Scholar 

  9. Godik, S., Anderson, A., Parducci, B., Humenn, P., Vajjhala. S.: Oasis extensible access control 2 markup language (xacml) 3. Technical report, OASIS (2002)

    Google Scholar 

  10. Grzegorowski, M., Zdravevski, E., Janusz, A., Lameski, P., Apanowicz, C., Slezak, D.: Cost optimization for big data workloads based on dynamic scheduling and cluster-size tuning. Big Data Res. 25, 100203 (2021)

    Article  Google Scholar 

  11. Hardt, D.: The OAuth 2.0 authorization framework (2012)

    Google Scholar 

  12. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing environment. In: Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International Workshop on, pp. 63–74. IEEE (2003)

    Google Scholar 

  13. Kirrane, S.: Linked data with access control. Ph.D. Thesis (2015)

    Google Scholar 

  14. Kirrane, S., Mileo, A., Decker, S.: Access control and the resource description framework: a survey. Seman. Web 8(2), 311–352 (2017)

    Article  Google Scholar 

  15. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In: Proceedings of the 16th international conference on World Wide Web, pp. 677–686. ACM (2007)

    Google Scholar 

  16. Muhleisen, H., Kost, M., Freytag, J.-C.: SWRL-based access policies for linked data. Procs of SPOT, 80 (2010)

    Google Scholar 

  17. Oulmakhzoune, S., Cuppens-Boulahia, N., Cuppens, F., Morucci, S.: fQuery: SPARQL query rewriting to enforce data confidentiality. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Privacy XXIV, DBSec 2010. LNCS, vol. 6166, pp. 146–161. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13739-6_10

  18. Scarioni, C.: Pro Spring Security. Apress, New York City (2013)

    Google Scholar 

  19. Sporny, M., Inkster, T., Story, H., Harbulot, B., Bachmann-Gmür, R.: Webid 1.0: Web identification and discovery. Editor’s draft, W3C (2011)

    Google Scholar 

  20. Stojanov, R., Gramatikov, S., Mishkovski, I., Trajanov, D.: Linked data authorization platform. IEEE Access 6, 1189–1213 (2017)

    Article  Google Scholar 

  21. Stojanov, R., Gramatikov, S., Popovski, O., Trajanov, D.: Semantic-driven secured data access in distributed IoT systems. In: 2018 26th Telecommunications Forum (TELFOR), pp. 420–425. IEEE (2018)

    Google Scholar 

  22. Stojanov, R., Jovanovik, M.: Authorization proxy for SPARQL endpoints. In: Trajanov, D., Bakeva, V. (eds.) ICT Innovations 2017. CCIS, vol. 778, pp. 205–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67597-8_20

    Chapter  Google Scholar 

  23. Story, H., Harbulot, B., Jacobi, I., Jones, M.: FOAF+ SSl: restful authentication for the social web. In: Proceedings of the First Workshop on Trust and Privacy on the Social and Semantic Web (SPOT2009) (2009)

    Google Scholar 

  24. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: Proteus: a semantic context-aware adaptive policy model. In: Eighth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’07), pp. 129–140. IEEE (2007)

    Google Scholar 

  25. Zdravevski, E., Lameski, P., Apanowicz, C., Ślȩzak, D.: From big data to business analytics: the case study of churn prediction. Appl. Soft Comput. 90, 106164 (2020)

    Article  Google Scholar 

  26. Zdravevski, E., Lameski, P., Kulakov, A., Filiposka, S., Trajanov, D., Jakimovski, B.: Parallel computation of information gain using Hadoop and MapReduce. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 181–192 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riste Stojanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stojanov, R., Popovski, O., Jovanovik, M., Zdravevski, E., Lameski, P., Trajanov, D. (2021). Temporal Authorization Graphs: Pros, Cons and Limits. In: Pires, I.M., Spinsante, S., Zdravevski, E., Lameski, P. (eds) Smart Objects and Technologies for Social Good. GOODTECHS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 401. Springer, Cham. https://doi.org/10.1007/978-3-030-91421-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91421-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91420-2

  • Online ISBN: 978-3-030-91421-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics