Abstract
Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network(DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beheshti, A., Yakhchi, S., Mousaeirad, S., Ghafari, S.M., Goluguri, S.R., Edrisi, M.A.: Towards cognitive recommender systems. Algorithms 13(8), 176 (2020)
Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009–1034 (2016)
Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5
Cho, K.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1724–1734. Association for Computational Linguistics, October 2014
Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_8
Dees, M., de Leoni, M., van der Aalst, W.M.P., Reijers, H.A.: What if process predictions are not followed by good recommendations? (technical report). arXiv preprint arXiv:1905.10173 (2019)
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27
Eili, M.Y., Rezaeenour, J., Sani, M.F.: A systematic literature review on process-aware recommender systems. arXiv preprint arXiv:2103.16654 (2021)
Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24
Evermann, J., Rehse, J.-R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)
Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support Syst. 59, 93–107 (2014)
Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)
Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)
Gröger, C., Schwarz, H., Mitschang, B.: Prescriptive analytics for recommendation-based business process optimization. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 25–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06695-0_3
Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10(12) (2009)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kumar, A., et al.: Ask me anything: dynamic memory networks for natural language processing. In: International Conference on Machine Learning, pp. 1378–1387. PMLR (2016)
Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97–126 (2013). https://doi.org/10.1007/s10115-013-0697-8
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G.: Prescriptive analytics: literature review and research challenges. Int. J. Inf. Manage. 50, 57–70 (2020)
Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2017)
Mikolov, T., et al.: Statistical language models based on neural networks. Presentation at Google, Mountain View, 2 April 2012
Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)
Radford, A., Jeffrey, W., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Santiputri, M., Ghose, A., Dam, H.K., Automating the acquisition of process semantics: Mining task post-conditions. Data Knowl. Eng. 109, 112–125 (2017)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W.: Supporting flexible processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_7
Sindhgatta, R., Ghose, A., Dam, H.K.: Context-aware analysis of past process executions to aid resource allocation decisions. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 575–589. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_35
Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks. arXiv preprint arXiv:1503.08895 (2015)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: Review and benchmark. ACM Trans. Knowl. Discovery Data (TKDD) 13(2), 1–57 (2019)
van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_19
Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.:. Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. ACM Trans. Intell. Syst. Technol. (TIST) 10(4), 1–34 (2019)
Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process monitoring for recommending next best actions. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Khan, A. et al. (2021). DeepProcess: Supporting Business Process Execution Using a MANN-Based Recommender System. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, Hy. (eds) Service-Oriented Computing. ICSOC 2021. Lecture Notes in Computer Science(), vol 13121. Springer, Cham. https://doi.org/10.1007/978-3-030-91431-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-91431-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91430-1
Online ISBN: 978-3-030-91431-8
eBook Packages: Computer ScienceComputer Science (R0)