Skip to main content

Deep Reinforcement Learning Based Task Offloading Strategy Under Dynamic Pricing in Edge Computing

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 13121))

Included in the following conference series:

Abstract

Mobile edge computing has become a new paradigm for efficient computing, which allows users to offload computing tasks to edge servers to accomplish the tasks. However, in the real world, users usually keep moving, and the edge servers may dynamically change the offered service prices in order to maximize their own profits. At this moment, we need a highly efficient task offloading strategy for users. In this paper, we design a task offloading strategy when users are on the movement and edge servers dynamically change the service prices based on the deep reinforcement learning algorithm, which is named as DUTO. Furthermore, we run extensive experiments to evaluate our offloading strategy against four benchmark offloading strategies. The experimental results show that DUTO task offloading strategy can effectively improve the long-term profits of users in the dynamic environment with different experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the task offloading, the profit of user is defined as the difference between the cost of local execution and the cost of offloading to edge server for execution, i.e. the saved cost.

References

  1. Cisco v, Cisco Annual Internet Report (2018–2023). White Paper (2020). https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

  2. Hu, Y.C., Patel, M., Sabella, D., et al.: Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11), 1–16 (2015)

    Google Scholar 

  3. He, Q., Wang, C., Gui, G., et al.: A game-theoretical approach for mitigating edge DDoS attack. IEEE Trans. Dependable Secure Comput. 1(1), 1–16 (2021)

    Google Scholar 

  4. Yuan, L., He, Q., Tan, S., et al.: Coopedge: a decentralized blockchain-based platform for cooperative edge computing. In: The 30th Web Conference, pp. 2245–2257 (2021)

    Google Scholar 

  5. Li, B., He, Q., et al.: Auditing cache data integrity in the edge computing environment. IEEE Trans. Parallel Distrib. Syst. 32(5), 1210–1223 (2021)

    Article  Google Scholar 

  6. Lin, H., Zeadally, S., Chen, Z., et al.: A survey on computation offloading modeling for edge computing. J. Netw. Comput. Appl. 169(1), 1–25 (2020)

    Google Scholar 

  7. Peng, Q., Xia, Y., Wang, Y., et al.: A decentralized reactive approach to online task of-floading in mobile edge computing environments. In: The 18th International Conference on Service-Oriented Computing, pp. 232–247 (2020)

    Google Scholar 

  8. Zhao, H., Deng, S., Zhang, C., et al.: A mobility-aware cross-edge computation offloading framework for partitionable applications. In: 2019 IEEE International Conference on Web Services, pp. 193–200 (2019)

    Google Scholar 

  9. Cao, Z., Zhou, P., Li, R., et al.: Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile edge computing in industry 4.0. IEEE Internet Things J. 7(7), 6201–6213 (2020)

    Article  Google Scholar 

  10. Du, W., Lei, Q., et al.: Multiple energy harvesting devices enabled joint computation offloading and dynamic resource allocation for mobile edge computing systems. In: 2019 IEEE International Conference on Web Services, pp. 154–158 (2019)

    Google Scholar 

  11. Shen, B., Xu, X., Dai, F., et al.: Dynamic task offloading with minority game for internet of vehicles in cloud-edge computing. In: 2020 IEEE International Conference on Web Services, pp. 372–379 (2020)

    Google Scholar 

  12. Chen, W., et al.: Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Trans. Serv. Comput. 12(5), 726–738 (2018)

    Article  Google Scholar 

  13. Fang, Z., Xu, X., Dai, F.F., et al.: Computation offloading and content caching with traffic flow prediction for internet of vehicles in edge computing. In: 2020 IEEE International Conference on Web Services, pp. 380–388 (2020)

    Google Scholar 

  14. Li, J., Gao, H., Lv, T., et al.: Deep reinforcement learning based computation offloading and resource allocation for MEC. In: 2018 IEEE Wireless Communications and Networking Conference, pp. 1–6 (2018)

    Google Scholar 

  15. Zhang, K., et al.: Optimal delay constrained offloading for vehicular edge computing networks. In: 2017 IEEE International Conference on Communications, pp. 1–6 (2017)

    Google Scholar 

  16. Du, W., Lei, T., He, Q., et al.: Service capacity enhanced task offloading and resource allocation in multi-server edge computing environment. In: 2019 IEEE International Conference on Web Services, pp. 83–90 (2019)

    Google Scholar 

  17. Xia, X., Chen, F.F., He, Q., et al.: Online collaborative data caching in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(2), 281–294 (2021)

    Article  Google Scholar 

  18. Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., Bennis, M.: Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet Things J. 6(3), 4005–4018 (2019)

    Article  Google Scholar 

  19. Cao, H., Cai, J.: Distributed multiuser computation offloading for cloudlet-based mobile cloud computing: a game-theoretic machine learning approach. IEEE Trans. Veh. Technol. 67(1), 752–764 (2018)

    Article  Google Scholar 

  20. Huang, L., Bi, S., et al.: Deep reinforcement learning for online computation offloading in wireless powered mobile edge computing networks. IEEE Trans. Mob. Comput. 19(11), 2581–2593 (2019)

    Article  Google Scholar 

  21. Peng, Q., Xia, Y., Feng, Z., et al.: Mobility-aware and migration-enabled online edge user allocation in mobile edge computing. In: 2019 IEEE International Conference on Web Services, pp. 91–98 (2019)

    Google Scholar 

  22. Du, Y., Yang, K., et al.: Joint resources and workflow scheduling in uav-enabled wirelessly-powered MEC for IoT systems. IEEE Trans. Veh. Technol. 68(10), 10187–10200 (2019)

    Article  Google Scholar 

  23. Lyu, X., Tian, H., et al.: Energy-efficient admission of delay-sensitive tasks for mobile edge computing. IEEE Trans. Commun. 66(6), 2603–2616 (2018)

    Article  Google Scholar 

  24. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In: Mobile Computing, pp. 153–181 (1996)

    Google Scholar 

  25. Zaitoun, T.A., Issa, M.B., et al.: Evaluation and enhancement of the edgecloudsim using poisson interarrival time and load capacity. In: The 8th International Conference on Computer Science and Information Technology, pp. 7–12 (2018)

    Google Scholar 

  26. Zhang, X., Zhang, J., Liu, Z., et al.: MDP-based task offloading for vehicular edge computing under certain and uncertain transition probabilities. IEEE Trans. Veh. Technol. 69(3), 3296–3309 (2020)

    Article  Google Scholar 

  27. Xu, X., Li, Y., Huang, T., et al.: An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 133(1), 75–85 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This paper was funded by the Humanity and Social Science Youth Research Foundation of Ministry of Education (Grant No. 19YJC790111), the Philosophy and Social Science Post-Foundation of Ministry of Education (Grand No. 18JHQ060) and Shenzhen Fundamental Research Program (Grant No. JCYJ20190809175613332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, B., Chen, F., Tang, X. (2021). Deep Reinforcement Learning Based Task Offloading Strategy Under Dynamic Pricing in Edge Computing. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, Hy. (eds) Service-Oriented Computing. ICSOC 2021. Lecture Notes in Computer Science(), vol 13121. Springer, Cham. https://doi.org/10.1007/978-3-030-91431-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91431-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91430-1

  • Online ISBN: 978-3-030-91431-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics