Abstract
We propose a network based framework to model spread of disease. We study the evolution and control of spread of virus using the standard SIR-like rules while incorporating the various available models for social interaction. The dynamics of the framework has been compared with the real-world data of COVID-19 spread in India. This framework is further used to compare vaccination strategies.
A. Misra—Currently working at University of Illinois at Urbana-Champaign, USA,
D. Bajpai—Currently working at Goldman Sachs Services Private Limited, Bengaluru, India.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Calonaci, C., Chiacchio, F., Pappalardo, F.: Optimal vaccination schedule search using genetic algorithm over MPI technology. BMC Med. Inform. Decis. Mak. 12(1), 129 (2012)
Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)
Hu, X.-M., Zhang, J., Chen, H.: Optimal vaccine distribution strategy for different age groups of population: a differential evolution algorithm approach. Math. Probl. Eng. 2014, 7 (2014). Article ID 702973. https://doi.org/10.1155/2014/702973
Johansson, M.A., et al.: SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw. Open 4(1), e2035057–e2035057 (2021)
Kherani, A.A., Kherani, N.A., Singh, R.R., Dhar, A.K., Manjunath, D., et al.: On modeling of interaction-based spread of communicable diseases. In: Gervasi, O. (ed.) ICCSA 2021. LNCS, vol. 12949, pp. 576–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_42
Kumar, V.M., Pandi-Perumal, S.R., Trakht, I., Thyagarajan, S.P.: Strategy for COVID-19 vaccination in India: the country with the second highest population and number of cases. NPJ Vaccines 6(1), 1–7 (2021)
Matrajt, L., Eaton, J., Leung, T., Brown, E.R.: Vaccine optimization for COVID-19: who to vaccinate first? medRxiv (2020)
Patel, R., Longini, I.M., Jr., Halloran, M.E.: Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J. Theor. Biol. 234(2), 201–212 (2005)
Sanche, S., Lin, Y., Xu, C., Romero-Severson, E., Hengartner, N., Ke, R.: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 26(7), 1470 (2020)
Sanders, L., Woolley-Meza, O.: Optimal vaccination of a general population network via genetic algorithms. BioRxiv, p. 227116 (2018)
Singh, R.R.: Centrality measures: a tool to identify key actors in social networks. In: Biswas, A., Patgiri, R., Biswas, B. (eds.) Principles of Social Networking. SIST, vol. 246, pp. 1–27. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3398-0_1
Wu, J.T., Leung, K., Bushman, M., et al.: Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020). https://doi.org/10.1038/s41591-020-0822-7
Xu, Z., Zu, Z., Zheng, T., Zhang, W., Xu, Q., Liu, J.: Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks. PLoS One 9(5), e95911 (2014)
Yang, Y., McKhann, A., Chen, S., Harling, G., Onnela, J.P.: Efficient vaccination strategies for epidemic control using network information. Epidemics 27, 115–122 (2019)
Acknowledgements
This work is supported by a research grant under a special call under the MATRICS scheme by SERB, India (MSC/2020/000374). This works is partially supported by Research Initiation Grant from IIT Bhilai (2004800).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Singh, R.R., Dhar, A.K., Kherani, A.A., Jacob, N.V., Misra, A., Bajpai, D. (2021). Network Based Framework to Compare Vaccination Strategies. In: Mohaisen, D., Jin, R. (eds) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science(), vol 13116. Springer, Cham. https://doi.org/10.1007/978-3-030-91434-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-91434-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91433-2
Online ISBN: 978-3-030-91434-9
eBook Packages: Computer ScienceComputer Science (R0)