Skip to main content

Network Based Framework to Compare Vaccination Strategies

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2021)

Abstract

We propose a network based framework to model spread of disease. We study the evolution and control of spread of virus using the standard SIR-like rules while incorporating the various available models for social interaction. The dynamics of the framework has been compared with the real-world data of COVID-19 spread in India. This framework is further used to compare vaccination strategies.

A. Misra—Currently working at University of Illinois at Urbana-Champaign, USA,

D. Bajpai—Currently working at Goldman Sachs Services Private Limited, Bengaluru, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Calonaci, C., Chiacchio, F., Pappalardo, F.: Optimal vaccination schedule search using genetic algorithm over MPI technology. BMC Med. Inform. Decis. Mak. 12(1), 129 (2012)

    Article  Google Scholar 

  4. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91(24), 247901 (2003)

    Article  Google Scholar 

  5. Hu, X.-M., Zhang, J., Chen, H.: Optimal vaccine distribution strategy for different age groups of population: a differential evolution algorithm approach. Math. Probl. Eng. 2014, 7 (2014). Article ID 702973. https://doi.org/10.1155/2014/702973

  6. Johansson, M.A., et al.: SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw. Open 4(1), e2035057–e2035057 (2021)

    Article  Google Scholar 

  7. Kherani, A.A., Kherani, N.A., Singh, R.R., Dhar, A.K., Manjunath, D., et al.: On modeling of interaction-based spread of communicable diseases. In: Gervasi, O. (ed.) ICCSA 2021. LNCS, vol. 12949, pp. 576–591. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_42

    Chapter  Google Scholar 

  8. Kumar, V.M., Pandi-Perumal, S.R., Trakht, I., Thyagarajan, S.P.: Strategy for COVID-19 vaccination in India: the country with the second highest population and number of cases. NPJ Vaccines 6(1), 1–7 (2021)

    Article  Google Scholar 

  9. Matrajt, L., Eaton, J., Leung, T., Brown, E.R.: Vaccine optimization for COVID-19: who to vaccinate first? medRxiv (2020)

    Google Scholar 

  10. Patel, R., Longini, I.M., Jr., Halloran, M.E.: Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. J. Theor. Biol. 234(2), 201–212 (2005)

    Article  MathSciNet  Google Scholar 

  11. Sanche, S., Lin, Y., Xu, C., Romero-Severson, E., Hengartner, N., Ke, R.: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 26(7), 1470 (2020)

    Article  Google Scholar 

  12. Sanders, L., Woolley-Meza, O.: Optimal vaccination of a general population network via genetic algorithms. BioRxiv, p. 227116 (2018)

    Google Scholar 

  13. Singh, R.R.: Centrality measures: a tool to identify key actors in social networks. In: Biswas, A., Patgiri, R., Biswas, B. (eds.) Principles of Social Networking. SIST, vol. 246, pp. 1–27. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3398-0_1

    Chapter  Google Scholar 

  14. Wu, J.T., Leung, K., Bushman, M., et al.: Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 506–510 (2020). https://doi.org/10.1038/s41591-020-0822-7

  15. Xu, Z., Zu, Z., Zheng, T., Zhang, W., Xu, Q., Liu, J.: Comparative analysis of the effectiveness of three immunization strategies in controlling disease outbreaks in realistic social networks. PLoS One 9(5), e95911 (2014)

    Article  Google Scholar 

  16. Yang, Y., McKhann, A., Chen, S., Harling, G., Onnela, J.P.: Efficient vaccination strategies for epidemic control using network information. Epidemics 27, 115–122 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a research grant under a special call under the MATRICS scheme by SERB, India (MSC/2020/000374). This works is partially supported by Research Initiation Grant from IIT Bhilai (2004800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Ranjan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, R.R., Dhar, A.K., Kherani, A.A., Jacob, N.V., Misra, A., Bajpai, D. (2021). Network Based Framework to Compare Vaccination Strategies. In: Mohaisen, D., Jin, R. (eds) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science(), vol 13116. Springer, Cham. https://doi.org/10.1007/978-3-030-91434-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91434-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91433-2

  • Online ISBN: 978-3-030-91434-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics