Skip to main content

Fake News Detection Using LDA Topic Modelling and K-Nearest Neighbor Classifier

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2021)

Abstract

The spread of the COVID 19 virus has dramatically impacted global society by modifying its lifestyle. Social networks, video streaming tools, virtual collaborative environments have been the primary source of communication through the Internet. This suspension of the “real” has led all activities to be declined through new places and contexts of virtual discussion, increasing new problems, including the most important related to the spread of so-called Fake News. The spread of such news can be devastating: consider what is happening during the critical vaccination phase for COVID 19. In this scenario, systems able to recognize, in a practical way, the truthfulness of news are becoming more and more valuable.

This paper aims to present an approach that combines probabilistic and machine learning techniques such as Latent Dirichlet Allocation and K-NN in combination with Context-Awareness techniques to identify the veracity of the news. Adopting Context-Awareness techniques within the proposed system allows a better definition of the operational context Fake News refers to, reducing the problems of semantic polysemy. The first results obtained through standard datasets or using data from real contexts are very interesting and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.uvic.ca/ecs/ece/isot/datasets/fake-news/index.php.

References

  1. di Renzo, L., et al.: Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J. Transl. Med. 18(1) (2020). https://doi.org/10.1186/s12967-020-02399-5

  2. Herrera-Peco, I., et al.: Antivaccine movement and COVID-19 negationism: a content analysis of Spanish-written messages on Twitter. Vaccines 9(6) (2021). https://doi.org/10.3390/vaccines9060656

  3. York, C., Ponder, J.D., Humphries, Z., Goodall, C., Beam, M., Winters, C.: Effects of fact-checking political misinformation on perceptual accuracy and epistemic political efficacy. J. Mass Commun. Q. 97(4) (2020). https://doi.org/10.1177/1077699019890119

  4. Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media. ACM SIGKDD Explor. Newsl. 19(1) (2017). https://doi.org/10.1145/3137597.3137600

  5. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2) (2017). https://doi.org/10.1257/jep.31.2.211

  6. Zhou, X., Zafarani, R.: A survey of fake news: fundamental theories, detection methods, and opportunities. ACM Comput. Surv. 53(5) (2020). https://doi.org/10.1145/3395046

  7. Sahoo, S.R., Gupta, B.B.: Real-time detection of fake account in Twitter using machine-learning approach. In: Gao, X.-Z., Tiwari, S., Trivedi, M.C., Mishra, K.K. (eds.) Advances in Computational Intelligence and Communication Technology. AISC, vol. 1086, pp. 149–159. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-1275-9_13

    Chapter  Google Scholar 

  8. Przybyła, P.: Capturing the style of fake news (2020). https://doi.org/10.1609/aaai.v34i01.5386

  9. Nagaraja, A., Soumya, K.N., Naik, P., Sinha, A., Rajendrakumar, J.V.: Fake news detection using machine learning methods (2021). https://doi.org/10.1145/3460620.3460753

  10. Ozbay, F.A., Alatas, B.: Fake news detection within online social media using supervised artificial intelligence algorithms. Physica A: Stat. Mech. Appl. 540 (2020). https://doi.org/10.1016/j.physa.2019.123174

  11. Shu, K., Liu, H.: Detecting fake news on social media. Synthesis Lectures Data Min. Knowl. Discov. 11(3) (2019). https://doi.org/10.2200/s00926ed1v01y201906dmk018

  12. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(4–5) (2003). https://doi.org/10.1016/b978-0-12-411519-4.00006-9

  13. Clarizia, F., Colace, F., Lombardi, M., Pascale, F., Santaniello, D.: Sentiment analysis in social networks: a methodology based on the latent Dirichlet allocation approach, August 2019. https://doi.org/10.2991/eusflat-19.2019.36

  14. Colace, F., Casaburi, L., de Santo, M., Greco, L.: Sentiment detection in social networks and in collaborative learning environments. Comput. Hum. Behav. 51 (2015). https://doi.org/10.1016/j.chb.2014.11.090

  15. Hu, Q., Yu, D., Xie, Z.: Neighborhood classifiers. Expert Syst. Appl. 34(2) (2008). https://doi.org/10.1016/j.eswa.2006.10.043

  16. Dong, W., Charikar, M., Li, K.: Efficient K-nearest neighbor graph construction for generic similarity measures (2011). https://doi.org/10.1145/1963405.1963487

  17. Jiang, L., Cai, Z., Wang, D., Jiang, S.: Survey of improving K-nearest-neighbor for classification. In: Proceedings - Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, vol. 1 (2007). https://doi.org/10.1109/FSKD.2007.552

  18. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10 (2009). https://doi.org/10.1145/1577069.1577078

  19. Kesarwani, A., Chauhan, S.S., Nair, A.R.: Fake news detection on social media using k-nearest neighbor classifier (2020). https://doi.org/10.1109/ICACCE49060.2020.9154997

  20. Casillo, M., Conte, D., Lombardi, M., Santaniello, D., Valentino, C.: Recommender system for digital storytelling: a novel approach to enhance cultural heritage. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12667, pp. 304–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68787-8_22

    Chapter  Google Scholar 

  21. Colace, F., Lombardi, M., Pascale, F., Santaniello, D.: A multi-level approach for forecasting critical events in smart cities (2018). https://doi.org/10.18293/DMSVIVA2018-002

  22. Clarizia, F., Colace, F., de Santo, M., Lombardi, M., Pascale, F., Santaniello, D.: A context-aware chatbot for tourist destinations. In: 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 348–354, November 2019. https://doi.org/10.1109/SITIS.2019.00063

  23. Fariña, A., Brisaboa, N.R., Navarro, G., Claude, F., Places, Á.S., Rodríguez, E.: Word-based self-indexes for natural language text. ACM Trans. Inf. Syst. 30(1) (2012). https://doi.org/10.1145/2094072.2094073

  24. Wilson, A.T., Chew, P.A.: Term weighting schemes for latent Dirichlet allocation (2010)

    Google Scholar 

  25. Casillo, M., et al.: A multi-feature Bayesian approach for fake news detection. In: Chellappan, S., Choo, K.-K., Phan, NhatHai (eds.) CSoNet 2020. LNCS, vol. 12575, pp. 333–344. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66046-8_27

    Chapter  Google Scholar 

  26. Kula, S., Choraś, M., Kozik, R., Ksieniewicz, P., Woźniak, M.: Sentiment analysis for fake news detection by means of neural networks. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12140, pp. 653–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50423-6_49

    Chapter  Google Scholar 

  27. Bhutani, B., Rastogi, N., Sehgal, P., Purwar, A.: Fake news detection using sentiment analysis (2019). https://doi.org/10.1109/IC3.2019.8844880

  28. Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Santaniello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casillo, M., Colace, F., Gupta, B.B., Santaniello, D., Valentino, C. (2021). Fake News Detection Using LDA Topic Modelling and K-Nearest Neighbor Classifier. In: Mohaisen, D., Jin, R. (eds) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science(), vol 13116. Springer, Cham. https://doi.org/10.1007/978-3-030-91434-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91434-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91433-2

  • Online ISBN: 978-3-030-91434-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics