Skip to main content

Regarding the Virtual Reality Environment Design and Evaluation Based on STEAM Learning

  • Conference paper
  • First Online:
Innovative Technologies and Learning (ICITL 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13117))

Included in the following conference series:

Abstract

This study aims to design a STEAM virtual reality (VR) learning environment for engineering students, as well as evaluate the practicability of the learning environment. This study adopted Fuzzy Delphi Method by inviting six experts in the fields of VR application, STEAM education, and engineering education to execute the expert questionnaire survey, in a bid to build up a capability indicator of STEAM education and carry out the STEAM VR environment practicability evaluation serving as a foundation of the further development of curriculum. According to our study findings, the most important capability indicator in STEAM is “Hands-on Skills”, followed by “Problem Solving”, “Daily Life Application”, “Sensory Learning” and “Interdisciplinarity”. In terms of the practicability evaluation of STEAM VR learning environment establishment, the highest scoring element is “Interactivity”, followed by “Engagement”, with “Imagination” being the lowest. This study serves as a reference for future educators and researchers in establishing a STEAM VR learning environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, C.-C., Huang, S.-L., Cheng, Y.-M., Lou, S.-J.: Using an iSTEAM project-based learning model for technology senior high school students: Design, development, and evaluation. Int. J. Technol. Des. Educ. 10, 1–37 (2020). https://doi.org/10.1007/s10798-020-09643-5

    Article  Google Scholar 

  2. Adkins, S.S.: The 2016–2021 Worldwide Self-Paced eLearning Market: Global eLearning Market in Steep Decline. Ambient Insight, Monroe, WA (2016)

    Google Scholar 

  3. Lou, S.J., Liang, C.P., Chung, C.C.: Effectiveness of combining STEM activities and PBL: a case study of the design of fuel-efficient vehicles. Int. J. Eng. Educ. 33(6), 1763–1775 (2017)

    Google Scholar 

  4. Chung, C.C., Lin, C.L., Lou, S.J.: Analysis of the learning effectiveness of the STEAM-6E special course-a case study about the creative design of IOT assistant devices for the elderly. Sustainability 10(9), 1–16 (2018)

    Google Scholar 

  5. Huang, C.Y., Lou, S.J., Cheng, Y.M., Chung, C.C.: Research on teaching a welding implementation course assisted by sustainable virtual reality technology. Sustainability 12(23), 10044 (2020). https://doi.org/10.3390/su122310044

    Article  Google Scholar 

  6. Chung, C.C., Tung, C.C., Lou, S.J.: Research on Optimization of VR welding course development with ANP and satisfaction evaluation. Electronics 9(10), 1673 (2020)

    Article  Google Scholar 

  7. Pease, S.: ARCADE: STEM + A = STEAM. ARCADE, 31(2) (2013). http://cargocollective.com/speasedesign/ARCADE-STEM-A-STEAM

  8. Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data with augmented and virtual reality: challenges and research agenda. J. Big Data 2(1), 1–27 (2015). https://doi.org/10.1186/s40537-015-0031-2

    Article  Google Scholar 

  9. Burdea Grigore, C., Coiffet, P.: Virtual Reality Technology. Wiley-Interscience, London (1994)

    Google Scholar 

  10. Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., Mieno, H.: The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy Sets Syst. 55(3), 241–253 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Jer Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chung, CC., Cheng, YM., Lou, SJ. (2021). Regarding the Virtual Reality Environment Design and Evaluation Based on STEAM Learning. In: Huang, YM., Lai, CF., Rocha, T. (eds) Innovative Technologies and Learning. ICITL 2021. Lecture Notes in Computer Science(), vol 13117. Springer, Cham. https://doi.org/10.1007/978-3-030-91540-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91540-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91539-1

  • Online ISBN: 978-3-030-91540-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics