Skip to main content

Retrieval-Based Factorization Machines for CTR Prediction

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13081))

Included in the following conference series:

  • 1101 Accesses

Abstract

Click-through rate (CTR) prediction is a crucial task for personalized services such as online advertising and recommender system. Many methods including Factorization Machines (FM) and complex deep neural models have been proposed to predict CTR and achieve good results. However, they usually optimize the parameters through a global objective function such as minimizing logloss and mean square error for all training samples. Obviously they intend to capture global knowledge of user click behavior, but ignore local information. Therefore, we propose a novel approach of Retrieval-based Factorization Machines (RFM) for CTR prediction, which enhances FM by the neighbor-based local information. During online testing, we also leverage the K-Means clustering technique to partition the large training set to multiple small regions for efficient retrieval of neighbors. We evaluate our RFM model on three public datasets. The experimental results show that RFM performs better than existing models including FM and deep neural models, and is efficient because of the small number of model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://grouplens.org/datasets/movielens/latest/.

  2. 2.

    https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset/.

  3. 3.

    https://github.com/ycjuan/kaggle-2014-criteo.

  4. 4.

    http://www.libfm.org/.

References

  1. McMahan, H.B., et al.: Ad click prediction: a view from the trenches. In: SIGKDD, pp. 1222–1230 (2013)

    Google Scholar 

  2. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  3. He, X., et al.: Practical lessons from predicting clicks on ads at facebook. In: ADKDD@KDD, pp. 5:1–5:9

    Google Scholar 

  4. Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., Lin, C.-J.: Training and testing low-degree polynomial data mappings via linear SVM. J. Mach. Learn. Res. 11, 1471–1490 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE Computer Society (2010)

    Google Scholar 

  6. Juan, Y.-C., Zhuang, Y., Chin, W.-S.: Field-aware factorization machines for CTR prediction. In: RecSys, pp. 43–50

    Google Scholar 

  7. Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization machines. In: NIPS, pp. 3351–3359 (2016)

    Google Scholar 

  8. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: IJCAI, pp. 1725–1731. ijcai.org (2017)

    Google Scholar 

  9. He, X., Chua, T.-S.: Neural factorization machines for sparse predictive analytics. In: SIGIR, pp. 355–364

    Google Scholar 

  10. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.-S.: Attentional factorization machines: learning the weight of feature interactions via attention networks. In: IJCAI, pp. 3119–3125. AAAI Press (2017)

    Google Scholar 

  11. Cheng, H.-T., et al.: Wide & deep learning for recommender systems. In: DLRS@RecSys, pp. 7–10. ACM (2016)

    Google Scholar 

  12. Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.C.: Deep crossing: web-scale modeling without manually crafted combinatorial features. In: KDD, pp. 255–262. ACM (2016)

    Google Scholar 

  13. Tao, Z., Wang, X., He, X., Huang, X., Chua, T.-S.: Hoafm: A high-order attentive factorization machine for CTR prediction. Inf. Process. Manag. 57(6), 102076 (2020)

    Article  Google Scholar 

  14. Qu, Y., et al.: Product-based neural networks for user response prediction over multi-field categorical data. ACM Trans. Inf. Syst., 5:1–5:35 (2019)

    Google Scholar 

  15. Ebesu, T., Shen, B., Fang, Y.: Collaborative memory network for recommendation systems. In: SIGIR, pp. 515–524. ACM (2018)

    Google Scholar 

  16. Coates, A., Ng, A.Y.: Learning feature representations with K-Means. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 561–580. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_30

    Chapter  Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML. JMLR Workshop and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015)

    Google Scholar 

  18. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Baltrunas, L., Church, K., Karatzoglou, A., Oliver, N.: Frappe: understanding the usage and perception of mobile app recommendations in-the-wild. CoRR, abs/1505.03014 (2015)

    Google Scholar 

  20. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interactive Intell. Syst. (tiis), 5(4), 1–19 (2015)

    Google Scholar 

  21. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  23. Gunopulos, D.: Encyclopedia of Database Systems, 2nd edn. Springer, New York (2018). https://doi.org/10.1007/978-1-4614-8265-9

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 62072017, 61702024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Huang, Y., Zhao, X., Zhao, W., Tang, Y., Duan, Y. (2021). Retrieval-Based Factorization Machines for CTR Prediction. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91560-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91559-9

  • Online ISBN: 978-3-030-91560-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics