Skip to main content

A Multi-view Learning Approach for the Autonomic Management of Big Services

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13081))

Included in the following conference series:

Abstract

Big services have recently emerged as a solution to process, encapsulate and offer huge volumes of data as a service. However, its management operations are beyond the ability of human administrators, due to several challenges including big services’ large-scale nature and complexity, the heterogeneity of its components, the dynamicity and uncertainty of its hosting cloud environments. To cope with these challenges, we endow big services with self-* capabilities and we propose an autonomic computing architecture for big services. We also take advantage of two recent technologies called knowledge graphs and multi-view learning, to represent the managed big service’s information (service descriptions, services’ and data sources’ quality levels, management policies) as a heterogeneous information network. Finally, a decision mechanism to select and trigger the appropriate management policies is defined and validated through a set of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://shorturl.at/wOZ48.

  2. 2.

    https://wsdream.github.io/.

References

  1. Bhaskar, B., Jatoth, C., Gangadharan, G., Fiore, U.: A mapreduce-based modified grey wolf optimizer for qos-aware big service composition. Concurr. Comput. Pract. Exp. 32(8), e5351 (2020)

    Article  Google Scholar 

  2. Bruning, S., Weissleder, S., Malek, M.: A fault taxonomy for service-oriented architecture. In: 10th IEEE High Assurance Systems Engineering Symposium (HASE’07), pp. 367–368. IEEE (2007)

    Google Scholar 

  3. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2019)

    Article  Google Scholar 

  4. Cheng, Y., Leon-Garcia, A., Foster, I.: Toward an autonomic service management framework: a holistic vision of soa, aon, and autonomic computing. IEEE Commun. Mag. 46(5), 138–146 (2008)

    Article  Google Scholar 

  5. Ding, J., Zhang, D., Hu, X.H.: A framework for ensuring the quality of a big data service. In: International Conference on Services Computing (SCC), pp. 82–89. IEEE (2016)

    Google Scholar 

  6. E, X., Han, J., Wang, Y., Liu, L.: Big data-as-a-service: definition and architecture. In: 15th IEEE International Conference on Communication Technology, pp. 738–742 (2013)

    Google Scholar 

  7. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2017). arXiv preprint arXiv:1706.02216

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  9. Huang, L., Zhao, Q., Li, Y., Wang, S., Sun, L., Chou, W.: Reliable and efficient big service selection. Inf. Syst. Front. 19(6), 1273–1282 (2017)

    Article  Google Scholar 

  10. Jatoth, C., Gangadharan, G., Fiore, U., Buyya, R.: Qos-aware big service composition using mapreduce based evolutionary algorithm with guided mutation. Future Gener. Comput. Syst. 86, 1008–1018 (2018)

    Article  Google Scholar 

  11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  12. Kim, B., Kim, J., Chae, H., Yoon, D., Choi, J.W.: Deep neural network-based automatic modulation classification technique. In: International Conference on Information and Communication Technology Convergence, pp. 579–582. IEEE (2016)

    Google Scholar 

  13. Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open source tools for machine learning with big data in the hadoop ecosystem. J. Big Data 2(1), 24 (2015)

    Article  Google Scholar 

  14. Lin, Z., et al.: A structured self-attentive sentence embedding (2017). arXiv preprint arXiv:1703.03130

  15. Liu, M., Tu, Z., Xu, X., Wang, Z.: A data-driven approach for constructing multilayer network-based service ecosystem models (2020). arXiv:2004.10383

  16. Mezni, H., Sellami, M., Aridhi, S., Ben Charrada, F.: Towards big services: a synergy between service computing and parallel programming. In: Computing, pp. 1–36 (2021)

    Google Scholar 

  17. Mukherjee, T., Nath, A.: Big data analytics with service-oriented architecture. In: Exploring Enterprise Service Bus in the Service-Oriented Architecture Paradigm, pp. 216–234. IGI Global (2017)

    Google Scholar 

  18. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. Computer 40(11), 38–45 (2007)

    Article  Google Scholar 

  19. Sellami, M., Mezni, H., Hacid, M.S.: On the use of big data frameworks for big service composition. J. Netw. Comput. Appl. 166, 102732 (2020)

    Article  Google Scholar 

  20. Siddiqa, A., et al.: A survey of big data management: taxonomy and state-of-the-art. J. Netw. Comput. Appl. 71, 151–166 (2016)

    Article  Google Scholar 

  21. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7–8), 2031–2038 (2013)

    Article  Google Scholar 

  22. Taherkordi, A., Eliassen, F., Horn, G.: From iot big data to iot big services. In: International Symposium on Applied Computers, pp. 485–491. ACM (2017)

    Google Scholar 

  23. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  24. Wang, S., Su, W., Zhu, X., Zhang, H.: A hadoop-based approach for efficient web service management. J. Web Grid Serv. 9(1), 18–34 (2013)

    Article  Google Scholar 

  25. Wang, X., Yang, L.T., Feng, J., Chen, X., Deen, M.J.: A tensor-based big service framework for enhanced living environments. IEEE Cloud Comput. 3(6), 36–43 (2016)

    Article  Google Scholar 

  26. Xu, X., Sheng, Q.Z., Zhang, L.J., Fan, Y., Dustdar, S.: From big data to big service. Computer 48(7), 80–83 (2015)

    Article  Google Scholar 

  27. Yang, L.T., et al.: A multi-order distributed hosvd with its incremental computing for big services in cyber-physical-social systems. IEEE Trans. Big Data 6, 666–678 (2018)

    Google Scholar 

  28. Yang, Y., Xu, J., Xu, Z., Zhou, P., Qiu, T.: Quantile context-aware social iot service big data recommendation with d2d communication. IEEE Internet Things 7, 5533–5548 (2020)

    Article  Google Scholar 

  29. Zhou, J., et al.: Graph neural networks: a review of methods and applications (2018). arXiv preprint arXiv:1812.08434

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghedass, F., Ben Charrada, F. (2021). A Multi-view Learning Approach for the Autonomic Management of Big Services. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91560-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91559-9

  • Online ISBN: 978-3-030-91560-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics