Skip to main content

An Efficient Method for Indoor Layout Estimation with FPN

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13081))

Included in the following conference series:

  • 1239 Accesses

Abstract

As a fundamental part of indoor scene understanding, the research of indoor room layout estimation has attracted much attention recently. The task is to predict the structure of a room from a single image. In this article, we illustrate that this task can be well solved even without sophisticated post-processing program, by adopting Feature Pyramid Networks (FPN) to solve this problem with adaptive changes. Besides, an optimization step is devised to keep the order of key points unchanged, which is an essential part for improving the model’s performance but has been ignored from the beginning. Our method has demonstrated great performance on the benchmark LSUN dataset on both processing efficiency and accuracy. Compared with the state-of-the-art end-to-end method, our method is two times faster at processing speed (32 ms) than its speed (86 ms), with \(0.71\%\) lower key point error and \(0.2\%\) higher pixel error respectively. Besides, the advanced two-step method is only \(0.02\%\) better than our result on key point error. Both the high efficiency and accuracy make our method a good choice for some real-time room layout estimation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Dasgupta, S., Fang, K., Chen, K., Savarese, S.: Delay: robust spatial layout estimation for cluttered indoor scenes. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 616–624 (2016)

    Google Scholar 

  3. Hedau, V., Hoiem, D., Forsyth, D.A.: Recovering the spatial layout of cluttered rooms. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, pp. 1849–1856 (2009)

    Google Scholar 

  4. Hedau, V., Hoiem, D., Forsyth, D.A.: Recovering free space of indoor scenes from a single image. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2807–2814 (2012)

    Google Scholar 

  5. Hirzer, M., Roth, P.M., Lepetit, V.: Smart hypothesis generation for efficient and robust room layout estimation. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2020, pp. 2901–2909 (2020)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) Proceedings of 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  7. Kirillov, A., Girshick, R.B., He, K., Dollár, P.: Panoptic feature pyramid networks. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, pp. 6399–6408 (2019)

    Google Scholar 

  8. Kruzhilov, I., Romanov, M., Babichev, D., Konushin, A.: Double refinement network for room layout estimation. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) ACPR 2019. LNCS, vol. 12046, pp. 557–568. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41404-7_39

    Chapter  Google Scholar 

  9. Lee, C., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: Roomnet: end-to-end room layout estimation. In: IEEE International Conference on Computer Vision, ICCV 2017, pp. 4875–4884 (2017)

    Google Scholar 

  10. Lee, D.C., Gupta, A., Hebert, M., Kanade, T.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, vol. 1, pp. 1288–1296 (2010)

    Google Scholar 

  11. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 936–944 (2017)

    Google Scholar 

  12. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, ICCV 2017, pp. 2999–3007 (2017)

    Google Scholar 

  13. Mallya, A., Lazebnik, S.: Learning informative edge maps for indoor scene layout prediction. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, pp. 936–944 (2015)

    Google Scholar 

  14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, pp. 8024–8035 (2019)

    Google Scholar 

  15. Ramalingam, S., Pillai, J.K., Jain, A., Taguchi, Y.: Manhattan junction catalogue for spatial reasoning of indoor scenes. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3065–3072 (2013)

    Google Scholar 

  16. Ren, Y., Li, S., Chen, C., Kuo, C.-C.J.: A coarse-to-fine indoor layout estimation (CFILE) method. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 36–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_3

    Chapter  Google Scholar 

  17. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008)

    Article  Google Scholar 

  18. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, pp. 3485–3492 (2010)

    Google Scholar 

  20. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 5987–5995 (2017)

    Google Scholar 

  21. Zhang, J., Kan, C., Schwing, A.G., Urtasun, R.: Estimating the 3d layout of indoor scenes and its clutter from depth sensors. In: IEEE International Conference on Computer Vision, ICCV 2013, pp. 1273–1280 (2013)

    Google Scholar 

  22. Zhang, W., Zhang, W., Gu, J.: Edge-semantic learning strategy for layout estimation in indoor environment. CoRR abs/1901.00621 (2019). arXiv:1901.00621

  23. Zhang, Y., Yu, F., Song, S., Xu, P., Seff, A., Xiao, J.: Large-scale scene understanding challenge: room layout estimation. In: CVPR Workshop (2015)

    Google Scholar 

  24. Zhao, H., Lu, M., Yao, A., Guo, Y., Chen, Y., Zhang, L.: Physics inspired optimization on semantic transfer features: an alternative method for room layout estimation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 870–878 (2017)

    Google Scholar 

  25. Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: reconstructing the 3d room layout from a single RGB image. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, pp. 2051–2059 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the data providers of [23] for the testing data sets. This work was partially supported by the Natural Science Foundation of China (No. 61802344), the Ningbo Science and Technology Special Project(No. 2021Z019), the Hebei “One Hundred Plan” Project (No. E2012100006) and National Talent Program (No. G20200218015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiting Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A., Wen, S., Gao, Y., Li, Q., Deng, K., Pang, C. (2021). An Efficient Method for Indoor Layout Estimation with FPN. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91560-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91559-9

  • Online ISBN: 978-3-030-91560-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics