Skip to main content

SOMiMS - Topographic Mapping in the Model Space

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2021 (IDEAL 2021)

Abstract

Learning in the model space (LiMS) represents each observational unit (e.g. sparse and irregular time series) with a suitable model of it (point estimate), or a full posterior distribution over models. LiMS approaches take the mechanistic information of how the data is generated into account, thus enhancing the transparency and interpretability of the machine learning tools employed. In this paper we develop a novel topographic mapping in the model space and compare it with an extension of the Generative Topographic Mapping (GTM) to the model space. We demonstrate these two methods on a dataset of measurements taken on subjects in an adrenal steroid hormone deficiency study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arlt, W., et al.: Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2(8), e93136 (2017)

    Google Scholar 

  2. Arlt, W., Stewart, P.M.: Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinol. Metab. Clin 34(2), 293–313 (2005)

    Article  Google Scholar 

  3. Bishop, C.M., Svensén, M., Williams, C.K.: Developments of the generative topographic mapping. Neurocomputing 21(1–3), 203–224 (1998)

    Article  Google Scholar 

  4. Bishop, C.M., Svensén, M., Williams, C.K.: GTM: the generative topographic mapping. Neural Comput. 10(1), 215–234 (1998)

    Article  Google Scholar 

  5. Gianniotis, N., Tino, P.: Visualization of tree-structured data through generative topographic mapping. IEEE Trans. Neural Netw. 19(8), 1468–1493 (2008)

    Article  Google Scholar 

  6. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 4, 580–585 (1985)

    Article  Google Scholar 

  7. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  8. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  9. Natita, W., Wiboonsak, W., Dusadee, S.: Appropriate learning rate and neighborhood function of self-organizing map (som) for specific humidity pattern classification over southern thailand. Int. J. Model. Optim. 6(1), 61 (2016)

    Article  Google Scholar 

  10. Ni, H., Yin, H.: A self-organising mixture autoregressive network for fx time series modelling and prediction. Neurocomputing 72(16–18), 3529–3537 (2009)

    Article  Google Scholar 

  11. Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning, vol. 32, p. 68. The Mit Press, Cambridge (2006)

    MATH  Google Scholar 

  12. Shen, Y., Tino, P., Tsaneva-Atanasova, K.: Classification framework for partially observed dynamical systems. Phys. Rev. E 95(4), 043303 (2017)

    Article  Google Scholar 

  13. Stefanovič, P., Kurasova, O.: Visual analysis of self-organizing maps. Nonlinear Anal. Model. Control 16(4), 488–504 (2011)

    Article  Google Scholar 

  14. Tino, P., Kabán, A., Sun, Y.: A generative probabilistic approach to visualizing sets of symbolic sequences. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–706 (2004)

    Google Scholar 

  15. Torma, M.: Kohonen self-organizing feature map and its use in clustering. In: ISPRS Commission III Symposium: Spatial Information from Digital Photogrammetry and Computer Vision, vol. 2357, pp. 830–835. International Society for Optics and Photonics (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyue Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X. et al. (2021). SOMiMS - Topographic Mapping in the Model Space. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91608-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91607-7

  • Online ISBN: 978-3-030-91608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics