Skip to main content

Arrows in a Quiver: A Secure Certificateless Group Key Distribution Protocol for Drones

  • Conference paper
  • First Online:
Secure IT Systems (NordSec 2021)

Abstract

Drone-based applications continue to garner a lot of attention due to their significant potential in both commercial and non-commercial use. Owing to this increasing popularity, researchers have begun to pay attention to the communication security requirements involved in deploying drone-based applications and services on a large scale, with particular emphasis on group communication. The majority of existing works in this field focus on the use of symmetric key cryptographic schemes or group key agreement schemes. However, in this paper, we propose a pairing-free certificateless group authenticated key distribution protocol for drone-based applications which takes into consideration drones with varying computational resources. The proposed scheme ensures key freshness, group key secrecy, forward secrecy, and backward secrecy while ensuring that the scheme is lightweight enough to be implemented on very resource-constrained drones or smart devices. We extensively prove the security of our scheme and demonstrate its real-world applicability by evaluating its performance on three different kinds of drone boards (UP Xtreme i7 board, SamL11-Xpro board, and a Zolertia Re-mote Revb board).

This research has received funding from the Technology Innovation Institute (TII), Abu Dhabi for the project ARROWSMITH: Living (Securely) on the Edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://up-board.org/up-xtreme/.

  2. 2.

    https://github.com/Zolertia/Resources/wiki/RE-Mote.

  3. 3.

    https://www.microchip.com/Developmenttools/ProductDetails/DM320205.

  4. 4.

    https://www.dlbeer.co.nz/oss/c25519.html.

  5. 5.

    https://crypto.stanford.edu/pbc/.

  6. 6.

    https://github.com/iammrgenie/AinQ.

References

  1. Kugler, L.: Real-world applications for drones. Commun. ACM 62(11), 19–21 (2019)

    Article  Google Scholar 

  2. Altawy, R., Youssef, A.M.: Security, privacy, and safety aspects of civilian drones. ACM Trans. Cyber-Phys. Syst. 1(2), 1–25 (2017)

    Article  Google Scholar 

  3. Akram, R.N., et al.: Security, privacy and safety evaluation of dynamic and static fleets of drones. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC) (2017)

    Google Scholar 

  4. Frimpong, E., Bakas, A., Dang, H.-V., Michalas, A.: Do not tell me what i cannot do! (the constrained device shouted under the cover of the fog): implementing symmetric searchable encryption on constrained devices. In: Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (2020)

    Google Scholar 

  5. Frimpong, E., Michalas, A.: IoT-CryptoDiet: implementing a lightweight cryptographic library based on ECDH and ECDSA for the development of secure and privacy-preserving protocols in Contiki-NG. In: Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (2020)

    Google Scholar 

  6. Semal, B., Markantonakis, K., Akram, R.N.: A certificateless group authenticated key agreement protocol for secure communication in untrusted UAV networks. In: 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC) (2018)

    Google Scholar 

  7. Sun, H., Wen, Q., Zhang, H., Jin, Z.: A novel pairing-free certificateless authenticated key agreement protocol with provable security. Front. Comput. Sci. 7(4), 544–557 (2013)

    Article  MathSciNet  Google Scholar 

  8. Yang, G., Tan, C.-H.: Strongly secure certificateless key exchange without pairing. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security - ASIACCS 2011 (2011)

    Google Scholar 

  9. Xiong, H., Yan, W., Zhenyu, L.: A survey of group key agreement protocols with constant rounds. ACM Comput. Surv. 52(3), 1–32 (2019)

    Article  Google Scholar 

  10. Tian, B., Han, S., Jiankun, H., Dillon, T.: A mutual-healing key distribution scheme in wireless sensor networks. J. Netw. Comput. Appl. 34(1), 80–88 (2011)

    Article  Google Scholar 

  11. Kumar, V., Kumar, R., Pandey, S.K.: A computationally efficient centralized group key distribution protocol for secure multicast communications based upon RSA public key cryptosystem. J. King Saud Univ. Comput. Inf. Sci. 32(9), 1081–1094 (2020)

    Google Scholar 

  12. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_7

    Chapter  Google Scholar 

  13. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Advances in Cryptology - ASIACRYPT 2003, pp. 452–473 (2003)

    Google Scholar 

  14. Lee, E.-J., Lee, S.-E., Yoo, K.-Y.: A certificateless authenticated group key agreement protocol providing forward secrecy. In: 2008 International Symposium on Ubiquitous Multimedia Computing (2008)

    Google Scholar 

  15. Tedeschi, P., Sciancalepore, S., Eliyan, A., Di Pietro, R.: LiKe: lightweight certificateless key agreement for secure IoT communications. IEEE Internet Things J. 7(1), 621–638 (2020)

    Article  Google Scholar 

  16. Won, J., Seo, S.-H., Bertino, E.: A secure communication protocol for drones and smart objects. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security (2015)

    Google Scholar 

  17. Boyd, C., Nieto, J.M.: Round-optimal contributory conference key agreement. In: Public Key Cryptography - PKC 2003, pp. 161–174 (2002)

    Google Scholar 

  18. Bresson, E., Catalano, D.: Constant round authenticated group key agreement via distributed computation. In: Public Key Cryptography - PKC 2004, pp. 115–129 (2004)

    Google Scholar 

  19. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_6

    Chapter  Google Scholar 

  20. Nam, J., Lee, J., Kim, S., Won, D.: DDH-based group key agreement in a mobile environment. J. Syst. Softw. 78(1), 73–83 (2005)

    Article  Google Scholar 

  21. Rafaeli, S., Hutchison, D.: A survey of key management for secure group communication. ACM Comput. Surv. 35(3), 309–329 (2003)

    Article  Google Scholar 

  22. Li, X., Wang, Y., Vijayakumar, P., He, D., Kumar, N., Ma, J.: Blockchain-based mutual-healing group key distribution scheme in unmanned aerial vehicles ad-hoc network. IEEE Trans. Veh. Technol. 68(11), 11309–11322 (2019)

    Article  Google Scholar 

  23. Agrawal, S., Das, M.L.: Mutual healing enabled group-key distribution protocol in wireless sensor networks. Comput. Commun. 112, 131–140 (2017)

    Article  Google Scholar 

  24. Agrawal, S., Patel, J., Das, M.L.: Pairing based mutual healing in wireless sensor networks. In: 2016 8th International Conference on Communication Systems and Networks (COMSNETS) (2016)

    Google Scholar 

  25. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3_4

    Chapter  MATH  Google Scholar 

  26. Scott, M., McCusker, K., Budroni, A.: The MIRACL core library. https://github.com/miracl/core

  27. Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M., Schmidt, T.: RIOT OS: towards an OS for the internet of things. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Frimpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frimpong, E., Rabbaninejad, R., Michalas, A. (2021). Arrows in a Quiver: A Secure Certificateless Group Key Distribution Protocol for Drones. In: Tuveri, N., Michalas, A., Brumley, B.B. (eds) Secure IT Systems. NordSec 2021. Lecture Notes in Computer Science(), vol 13115. Springer, Cham. https://doi.org/10.1007/978-3-030-91625-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91625-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91624-4

  • Online ISBN: 978-3-030-91625-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics