Skip to main content

Named Entity Recognition Architecture Combining Contextual and Global Features

  • Conference paper
  • First Online:
Towards Open and Trustworthy Digital Societies (ICADL 2021)

Abstract

Named entity recognition (NER) is an information extraction technique that aims to locate and classify named entities (e.g., organizations, locations, ...) within a document into predefined categories. Correctly identifying these phrases plays a significant role in simplifying information access. However, it remains a difficult task because named entities (NEs) have multiple forms and they are context dependent. While the context can be represented by contextual features, the global relations are often misrepresented by those models. In this paper, we propose the combination of contextual features from XLNet and global features from Graph Convolution Network (GCN) to enhance NER performance. Experiments over a widely-used dataset, CoNLL 2003, show the benefits of our strategy, with results competitive with the state of the art (SOTA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Link to the code: github.com/honghanhh/ner-combining-contextual-and-global-features.

  2. 2.

    https://fasttext.cc/.

  3. 3.

    https://github.com/flairNLP/flair.

  4. 4.

    https://github.com/stanfordnlp/stanza.

  5. 5.

    https://github.com/zihangdai/xlnet.

References

  1. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: FLAIR: an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pp. 54–59 (2019)

    Google Scholar 

  2. Cetoli, A., Bragaglia, S., O’Harney, A., Sloan, M.: Graph convolutional networks for named entity recognition. In: Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories, pp. 37–45 (2017)

    Google Scholar 

  3. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)

    Article  Google Scholar 

  4. Church, K.W.: Word2vec. Nat. Lang. Eng. 23(1), 155–162 (2017)

    Article  Google Scholar 

  5. Collins, M., Singer, Y.: Unsupervised models for named entity classification. In: 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (1999)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (1) (2019)

    Google Scholar 

  7. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

    Google Scholar 

  8. Etzioni, O., et al.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165(1), 91–134 (2005)

    Article  MathSciNet  Google Scholar 

  9. Grishman, R., Sundheim, B.M.: Message understanding conference-6: a brief history. In: COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics (1996)

    Google Scholar 

  10. Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 782–792 (2011)

    Google Scholar 

  11. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv:1508.01991 (2015)

  12. Ji, Z., Sun, A., Cong, G., Han, J.: Joint recognition and linking of fine-grained locations from tweets. In: Proceedings of the 25th International Conference on World Wide Web, pp. 1271–1281 (2016)

    Google Scholar 

  13. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: FastText.zip: compressing text classification models. arXiv preprint arXiv:1612.03651 (2016)

  14. Krupka, G., IsoQuest, K.: Description of the NEROWL extractor system as used for MUC-7. In: Proceedings of the 7th Message Understanding Conference, Virginia, pp. 21–28 (2005)

    Google Scholar 

  15. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 260–270 (2016)

    Google Scholar 

  16. Lample, G., Conneau, A.: Cross-lingual language model pretraining. arXiv:1901.07291 (2019)

  17. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. In: International Conference on Learning Representations (2019)

    Google Scholar 

  18. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  19. Liao, W., Veeramachaneni, S.: A simple semi-supervised algorithm for named entity recognition. In: Proceedings of the NAACL HLT 2009 Workshop on Semi-supervised Learning for Natural Language Processing, pp. 58–65 (2009)

    Google Scholar 

  20. Liu, L., Shang, J., Ren, X., Xu, F.F., Gui, H., Peng, J., Han, J.: Empower sequence labeling with task-aware neural language model. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 5253–5260. AAAI Press (2018)

    Google Scholar 

  21. Liu, S., Sun, Y., Li, B., Wang, W., Zhao, X.: HAMNER: headword amplified multi-span distantly supervised method for domain specific named entity recognition. In: AAAI, pp. 8401–8408 (2020)

    Google Scholar 

  22. Liu, T., Yao, J.G., Lin, C.Y.: Towards improving neural named entity recognition with gazetteers. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5301–5307 (2019)

    Google Scholar 

  23. Liu, Y., Meng, F., Zhang, J., Xu, J., Chen, Y., Zhou, J.: GCDT: a global context enhanced deep transition architecture for sequence labeling. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2431–2441 (2019)

    Google Scholar 

  24. Luo, Y., Xiao, F., Zhao, H.: Hierarchical contextualized representation for named entity recognition. In: AAAI, pp. 8441–8448 (2020)

    Google Scholar 

  25. Ma, X., Hovy, E.H.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: ACL (1) (2016)

    Google Scholar 

  26. Mikheev, A., Moens, M., Grover, C.: Named entity recognition without gazetteers. In: Ninth Conference of the European Chapter of the Association for Computational Linguistics (1999)

    Google Scholar 

  27. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-training distributed word representations. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018) (2018)

    Google Scholar 

  28. Nadeau, D., Turney, P.D., Matwin, S.: Unsupervised named-entity recognition: generating gazetteers and resolving ambiguity. In: Lamontagne, L., Marchand, M. (eds.) AI 2006. LNCS (LNAI), vol. 4013, pp. 266–277. Springer, Heidelberg (2006). https://doi.org/10.1007/11766247_23

    Chapter  Google Scholar 

  29. Palshikar, G.K.: Techniques for named entity recognition: a survey. In: Bioinformatics: Concepts, Methodologies, Tools, and Applications, pp. 400–426. IGI Global (2013)

    Google Scholar 

  30. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  31. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of NAACL-HLT, pp. 2227–2237 (2018)

    Google Scholar 

  32. Qi, P., Zhang, Y., Zhang, Y., Bolton, J., Manning, C.D.: Stanza: a python natural language processing toolkit for many human languages. arXiv preprint arXiv:2003.07082 (2020)

  33. Ritter, A., Clark, S., Etzioni, O., et al.: Named entity recognition in tweets: an experimental study. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 1524–1534 (2011)

    Google Scholar 

  34. Rocktäschel, T., Weidlich, M., Leser, U.: ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28(12), 1633–1640 (2012)

    Article  Google Scholar 

  35. Seti, X., Wumaier, A., Yibulayin, T., Paerhati, D., Wang, L., Saimaiti, A.: Named entity recognition in sports field based on a character-level graph convolutional network. Information 11(1), 30 (2020)

    Article  Google Scholar 

  36. Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general purpose distributed sentence representations via large scale multi-task learning. In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. Takeuchi, K., Collier, N.: Use of support vector machines in extended named entity recognition. In: COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002) (2002)

    Google Scholar 

  38. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL-2003, Edmonton, Canada, pp. 142–147 (2003)

    Google Scholar 

  39. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition from deep learning models. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2145–2158 (2018)

    Google Scholar 

  40. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)

    Google Scholar 

  41. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7370–7377 (2019)

    Google Scholar 

  42. Zhang, Y., Liu, Q., Song, L.: Sentence-state LSTM for text representation. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 317–327 (2018)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the European Union’s Horizon 2020 research and innovation program under grants 770299 (NewsEye) and 825153 (EMBEDDIA). The work of S. P. has also received financial support from the Slovenian Research Agency for research core funding for the Knowledge Technologies programme (No. P2-0103) and the project CANDAS (No. J6-2581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senja Pollak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanh, T.T.H., Doucet, A., Sidere, N., Moreno, J.G., Pollak, S. (2021). Named Entity Recognition Architecture Combining Contextual and Global Features. In: Ke, HR., Lee, C.S., Sugiyama, K. (eds) Towards Open and Trustworthy Digital Societies. ICADL 2021. Lecture Notes in Computer Science(), vol 13133. Springer, Cham. https://doi.org/10.1007/978-3-030-91669-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91669-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91668-8

  • Online ISBN: 978-3-030-91669-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics