Abstract
The rapid growth of scientific literature is presenting several challenges for the search and discovery of research artifacts. Datasets are the backbone of scientific experiments. It is crucial to locate the datasets used or generated by previous research as building suitable datasets is costly in terms of time, money, and human labor. Hence automated mechanisms to aid the search and discovery of datasets from scientific publications can aid reproducibility and reusability of these valuable scientific artifacts. Here in this work, utilizing the next sentence prediction capability of language models, we show that a BERT-based entity recognition model with POS aware embedding can be effectively used to address this problem. Our investigation shows that identifying sentences containing dataset mentions in the first place proves critical to the task. Our method outperforms earlier ones and achieves an F1 score of 56.2 in extracting dataset mentions from research papers on a popular corpus of social science publications. We make our codes available at https://github.com/sandeep82945/data_discovery.
S. Kumar and T. Ghosal—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
B, I, and O denote the beginning, intermediate, and outside of dataset mention.
References
The coleridge initiative announces rich context competition—NYU cusp. https://cusp.nyu.edu/blog/the-coleridge-initiative-announces-rich-context-competition/. Accessed 14 July 2021
Github - rich-context-competition/rich-context-book-2019. https://github.com/rich-context-competition/rich-context-book-2019. Accessed 14 July 2021
Rich context project - coleridge initiative. https://coleridgeinitiative.org/rich-context-project/. Accessed 14 July 2021
Richcontextcompetition - coleridge initiative. https://coleridgeinitiative.org/richcontext/richcontextcompetition/. Accessed 14 July 2021
Spacy industrial-strength natural language processing in python. https://spacy.io/. Accessed 15 July 2021
Cohan, A., Beltagy, I., King, D., Dalvi, B., Weld, D.S.: Pretrained language models for sequential sentence classification. In: EMNLP (2019)
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019, pp. 3613–3618. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371
Boland, K., Ritze, D., Eckert, K., Mathiak, B.: Identifying references to datasets in publications. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012. LNCS, vol. 7489, pp. 150–161. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33290-6_17
Chen, X., et al.: DataMed - an open source discovery index for finding biomedical datasets. J. Am. Medical Informatics Assoc. 25(3), 300–308 (2018)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019 (Long and Short Papers), vol. 1, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423
Feger, S.S.: Interactive tools for reproducible science - understanding, supporting, and motivating reproducible science practices. CoRR abs/2012.02570 (2020). https://arxiv.org/abs/2012.02570
Gardner, M., et al.: AllenNLP: a deep semantic natural language processing platform (2018). http://arxiv.org/abs/1803.07640
Ghavimi, B., Mayr, P., Lange, C., Vahdati, S., Auer, S.: A semi-automatic approach for detecting dataset references in social science texts. Inf. Serv. Use 36(3–4), 171–187 (2016)
Ghavimi, B., Mayr, P., Vahdati, S., Lange, C.: Identifying and improving dataset references in social sciences full texts. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, 20th International Conference on Electronic Publishing, Göttingen, Germany, 7–9 June 2016, pp. 105–114. IOS Press (2016). https://doi.org/10.3233/978-1-61499-649-1-105
Grover, M.: Amundsen - Lyft’s data discovery & metadata engine—by mark grover—Lyft engineering, April 2019. https://eng.lyft.com/amundsen-lyfts-data-discovery-metadata-engine-62d27254fbb9. Accessed 31 Oct 2020
Hong, G., Cao, M.S., Puerto-San-Roman, H.: Rich text competition. In: Rich Search and Discovery for Research Datasets: Building the Next Generation of Scholarly Infrastructure. Sage, London (2020)
King, D., Ammar, W., Beltagy, I., Betts, C., Gururangan, S., van Zuylen, M.: The AI2 submission at the rich context competition. In: Rich Search and Discovery for Research Datasets: Building the Next Generation of Scholarly Infrastructure. Sage, London (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015). http://arxiv.org/abs/1412.6980
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. CoRR abs/1603.01360 (2016). http://arxiv.org/abs/1603.01360
Lu, M., Bangalore, S., Cormode, G., Hadjieleftheriou, M., Srivastava, D.: A dataset search engine for the research document corpus. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1237–1240. IEEE (2012)
Munafò, M., et al.: A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017). https://doi.org/10.1038/s41562-016-0021
Nasar, Z., Jaffry, S.W., Malik, M.K.: Information extraction from scientific articles: a survey. Scientometrics 117(3), 1931–1990 (2018)
Ngonga, P.D.A., Srivastava, N., Jalota, R.: Dice @ rich context competition. In: Rich Search and Discovery for Research Datasets: Building the Next Generation of Scholarly Infrastructure. Sage, London (2020)
Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77094-7_41
Noy, N., Burgess, M., Brickley, D.: Google dataset search: building a search engine for datasets in an open web ecosystem. In: 28th Web Conference (WebConf 2019) (2019)
Otto, W., Zielinski, A., Ghavimi, B., Dimitrov, D., Tavakolpoursaleh, N.: Rich context competition phase 2. In: Rich Search and Discovery for Research Datasets: Building the Next Generation of Scholarly Infrastructure. Sage, London (2020)
Peng, F., McCallum, A.: Information extraction from research papers using conditional random fields. Inf. Process. Manag. 42(4), 963–979 (2006)
Prasad, A., Si, C., Kan, M.Y.: Dataset mention extraction and classification. In: Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications, Minneapolis, Minnesota, pp. 31–36. Association for Computational Linguistics, June 2019. https://doi.org/10.18653/v1/W19-2604. https://www.aclweb.org/anthology/W19-2604
Prasetyo, P.K., Silva, A., Lim, E.P., Achananuparp, P.: Simple extraction for social science publications. In: Rich Search and Discovery for Research Datasets: Building the Next Generation of Scholarly Infrastructure. Sage, London (2020)
Shamsfard, M., Jafari, H.S., Ilbeygi, M.: Step-1: a set of fundamental tools for Persian text processing. In: Calzolari, N., et al. (eds.) Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta, 17–23 May 2010. European Language Resources Association (2010). http://www.lrec-conf.org/proceedings/lrec2010/summaries/809.html
Singhal, A., Srivastava, J.: Research dataset discovery from research publications using web context. In: Web Intelligence, vol. 15, pp. 81–99. IOS Press (2017)
Zeng, T., Acuna, D.: Dataset mention extraction in scientific articles using a BiLSTM-CRF model. In: Rich Search and Discovery for Research Datasets: Building the Next Generation of Scholarly Infrastructure. Sage, London (2020)
Acknowledgement
Sandeep Kumar acknowledges the Prime Minister Research Fellowship (PMRF) program of the Government of India for its support. Asif Ekbal is a recipient of the Visvesvaraya Young Faculty Award and acknowledges Digital India Corporation, Ministry of Electronics and Information Technology, Government of India for supporting this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kumar, S., Ghosal, T., Ekbal, A. (2021). DataQuest: An Approach to Automatically Extract Dataset Mentions from Scientific Papers. In: Ke, HR., Lee, C.S., Sugiyama, K. (eds) Towards Open and Trustworthy Digital Societies. ICADL 2021. Lecture Notes in Computer Science(), vol 13133. Springer, Cham. https://doi.org/10.1007/978-3-030-91669-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-91669-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91668-8
Online ISBN: 978-3-030-91669-5
eBook Packages: Computer ScienceComputer Science (R0)