Abstract
Finding relevant publications in the scientific domain can be quite tedious: Accessing large-scale document collections often means to formulate an initial keyword-based query followed by many refinements to retrieve a sufficiently complete, yet manageable set of documents to satisfy one’s information need. Since keyword-based search limits researchers to formulating their information needs as a set of unconnected keywords, retrieval systems try to guess each user’s intent. In contrast, distilling short narratives of the searchers’ information needs into simple, yet precise entity-interaction graph patterns provides all information needed for a precise search. As an additional benefit, such graph patterns may also feature variable nodes to flexibly allow for different substitutions of entities taking a specified role. An evaluation over the PubMed document collection quantifies the gains in precision for our novel entity-interaction-aware search. Moreover, we perform expert interviews and a questionnaire to verify the usefulness of our system in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azad, H.K., Deepak, A.: Query expansion techniques for information retrieval: a survey. Inf. Process. Manag. 56(5), 1698–1735 (2019)
Betts, C., Power, J., Ammar, W.: GrapAL: connecting the dots in scientific literature. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 147–152. Association for Computational Linguistics, Florence (2019). https://doi.org/10.18653/v1/P19-3025
Dietz, L., Kotov, A., Meij, E.: Utilizing knowledge graphs for text-centric information retrieval. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR ’18, pp. 1387–1390. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3209978.3210187
Herskovic, J.R., Tanaka, L.Y., Hersh, W., Bernstam, E.V.: A day in the life of PubMed: analysis of a typical day’s query log. J. Am. Med. Inform. Assoc. 14(2), 212–220 (2007)
Kadry, A., Dietz, L.: Open relation extraction for support passage retrieval: merit and open issues. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17, pp. 1149–1152. Association for Computing Machinery, New York(2017). https://doi.org/10.1145/3077136.3080744
Kolluru, K., Adlakha, V., Aggarwal, S., Mausam, Chakrabarti, S.: OpenIE6: iterative grid labeling and coordination analysis for open information extraction. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 3748–3761. ACL (2020). https://doi.org/10.18653/v1/2020.emnlp-main.306
Kroll, H., Kalo, J.-C., Nagel, D., Mennicke, S., Balke, W.-T.: Context-compatible information fusion for scientific knowledge graphs. In: Hall, M., Merčun, T., Risse, T., Duchateau, F. (eds.) TPDL 2020. LNCS, vol. 12246, pp. 33–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54956-5_3
Kroll, H., Nagel, D., Balke, W.-T.: Modeling narrative structures in logical overlays on top of knowledge repositories. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 250–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_18
Kroll, H., Nagel, D., Kunz, M., Balke, W.T.: Demonstrating narrative bindings: linking discourses to knowledge repositories. In: Fourth Workshop on Narrative Extraction From Texts, Text2Story@ECIR2021. CEUR Workshop Proceedings, vol. 2860, pp. 57–63. CEUR-WS.org (2021). http://ceur-ws.org/Vol-2860/paper7.pdf
Kroll, H., Pirklbauer, J., Balke, W.T.: A toolbox for the nearly-unsupervised construction of digital library knowledge graphs. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2021. JCDL ’21, Association for Computing Machinery, New York (2021)
Krötzsch, M., Rudolph, S.: Is your database system a semantic web reasoner? KI - Künstliche Intelligenz 30(2), 169–176 (2015). https://doi.org/10.1007/s13218-015-0412-x
Manola, F., Miller, E., McBride, B., et al.: RDF primer. W3C Recommend. 10(1–107), 6 (2004)
Mohan, S., Fiorini, N., Kim, S., Lu, Z.: A fast deep learning model for textual relevance in biomedical information retrieval. In: Proceedings of the 2018 World Wide Web Conference, WWW ’18, pp. 77–86. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2018). https://doi.org/10.1145/3178876.3186049
Nguyen, D.B., Abujabal, A., Tran, N.K., Theobald, M., Weikum, G.: Query-driven on-the-fly knowledge base construction. Proc. VLDB Endow. 11(1), 66–79 (2017). https://doi.org/10.14778/3151113.3151119
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 1–45 (2009). https://doi.org/10.1145/1567274.1567278
Raviv, H., Kurland, O., Carmel, D.: Document retrieval using entity-based language models. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 65–74. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2911451.2911508
Spitz, A., Gertz, M.: Terms over load: leveraging named entities for cross-document extraction and summarization of events. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pp. 503–512. Association for Computing Machinery, New York(2016). https://doi.org/10.1145/2911451.2911529
Vazirgiannis, M., Malliaros, F.D., Nikolentzos, G.: GraphRep: boosting text mining, nlp and information retrieval with graphs. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM ’18, pp. 2295–2296. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3269206.3274273
Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pp. 1271–1279. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2017). https://doi.org/10.1145/3038912.3052558
Zhao, S., Su, C., Sboner, A., Wang, F.: Graphene: a precise biomedical literature retrieval engine with graph augmented deep learning and external knowledge empowerment. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM ’19, pp. 149–158. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3357384.3358038
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kroll, H., Pirklbauer, J., Kalo, JC., Kunz, M., Ruthmann, J., Balke, WT. (2021). Narrative Query Graphs for Entity-Interaction-Aware Document Retrieval. In: Ke, HR., Lee, C.S., Sugiyama, K. (eds) Towards Open and Trustworthy Digital Societies. ICADL 2021. Lecture Notes in Computer Science(), vol 13133. Springer, Cham. https://doi.org/10.1007/978-3-030-91669-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-91669-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91668-8
Online ISBN: 978-3-030-91669-5
eBook Packages: Computer ScienceComputer Science (R0)