Abstract
We propose in this paper a framework of prioritised logic programs (\(\textit{PLP}\)) to represent priority information explicitly in a program. Differently of others approaches, we do not restrain the preference relation only to literals, but to sets of literals. As consequence, we can express in \(\textit{PLP}\)s sophisticated forms of preferences without changing the programs or introducing new atoms to obtain artificially the intended preferences. Besides, inspired on various developments in the literature on preference, we present a comprehensive and systematic treatment to deal with preferences in logic programming. In fact, we introduced 32 different criteria (semantics) to establish preference between partial stable models as well as those semantics whose definition depends on partial stable models. We show some properties of our framework; in particular, we guarantee these semantics for \(\textit{PLP}\) generalise their counterparts for logic programs without preferences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pigozzi, G., Tsoukias, A., Viappiani, P.: Preferences in artificial intelligence. Ann. Math. Artif. Intell. 77(3), 361–401 (2016)
Brewka, G.: Well-founded semantics for extended logic programs with dynamic preferences. J. Artif. Intell. Res. 4, 19–36 (1996)
Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109(1–2), 297–356 (1999)
Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense reasoning. Artif. Intell. 123(1–2), 185–222 (2000)
Schaub, T., Wang, K.: A semantic framework for preference handling in answer set programming. arXiv preprint cs/0301023 (2003)
Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: International Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium Series, vol. 102 (2003)
Brewka, G., Niemelä, I., Syrjänen, T.: Logic programs with ordered disjunction. Comput. Intell. 20(2), 335–357 (2004)
Brewka, G.: Answer sets and qualitative optimization. Logic J. IGPL 14(3), 413–433 (2006)
Nicolas, P., Garcia, L., Stéphan, I., Lefèvre, C.: Possibilistic uncertainty handling for answer set programming. Ann. Math. Artif. Intell. 47(1), 139–181 (2006)
Gabaldon, A.: A selective semantics for logic programs with preferences. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 215–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8_17
Rondogiannis, P., Troumpoukis, A.: Expressing preferences in logic programming using an infinite-valued logic. In: Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming, pp. 208–219 (2015)
Zhang, Z.: Introspecting preferences in answer set programming. In: 34th International Conference on Logic Programming (ICLP 2018) (2018)
Kaci, S.: Working with preferences: Less is more. Springer Science and Business Media, 2011. https://doi.org/10.1007/978-3-642-17280-9_5
Przymusinski, T.: The well-founded semantics coincides with the three-valued stable semantics. Fundam. Inf. 13(4), 445–463 (1990)
Eiter, T., Leone, N., Sacca, D.: On the partial semantics for disjunctive deductive databases. Ann. Math. Artif. Intell. 19(1), 59–96 (1997)
Van Der T., Leendert, W.E.: Parameters for utilitarian desires in a qualitative decision theory. Appl. Intelli. 14(3), 285–301 (2001)
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion of preferences on the possibilistic logic framework. KR, 2, 421–432 (2002)
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibilistic representations. In: 18th International Conference on Uncertainty in Artificial Intelligence, pp. 45–52 (2002)
Lang, J., Van der Torre, L., Weydert, E.: Utilitarian desires. Auton. Agents Multi-agent Syst. 5(3), 329–363 (2002)
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference modeling: representation, fusion and optimal solutions. Inf. Fusion 7(1), 135–150 (2006)
Bistarelli, S., Pini, M., Rossi, F., Venable, K.: From soft constraints to bipolar preferences: modelling framework and solving issues. J. Exp. Theoret. Artif. Intell. 22(2), 135–158 (2010)
Poole, D.: On the comparison of theories: preferring the most specific explanation. In: 9th International Joint Conference on Artificial Intelligence, vol. 85, pp. 144–147 (1985)
Lifschitz, V.: Computing circumscription. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 85, pp. 121–127 (1985)
Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM (JACM) 42(1), 3–42 (1995)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3–4), 365–385 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Cordeiro, R., Fernandes, G., Alcântara, J., Viana, H. (2021). A Systematic Approach to Define Semantics for Prioritised Logic Programs. In: Britto, A., Valdivia Delgado, K. (eds) Intelligent Systems. BRACIS 2021. Lecture Notes in Computer Science(), vol 13073. Springer, Cham. https://doi.org/10.1007/978-3-030-91702-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-91702-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91701-2
Online ISBN: 978-3-030-91702-9
eBook Packages: Computer ScienceComputer Science (R0)