Skip to main content

Massive Superpoly Recovery with Nested Monomial Predictions

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13090))

Abstract

Determining the exact algebraic structure or some partial information of the superpoly for a given cube is a necessary step in the cube attack – a generic cryptanalytic technique for symmetric-key primitives with some secret and public tweakable inputs. Currently, the division property based approach is the most powerful tool for exact superpoly recovery. However, as the algebraic normal form (ANF) of the targeted output bit gets increasingly complicated as the number of rounds grows, existing methods for superpoly recovery quickly hit their bottlenecks. For example, previous method stuck at round 842, 190, and 892 for Trivium, Grain-128AEAD, and Kreyvium, respectively. In this paper, we propose a new framework for recovering the exact ANFs of massive superpolies based on the monomial prediction technique (ASIACRYPT 2020, an alternative language for the division property). In this framework, the targeted output bit is first expressed as a polynomial of the bits of some intermediate states. For each term appearing in the polynomial, the monomial prediction technique is applied to determine its superpoly if the corresponding MILP model can be solved within a preset time limit. Terms unresolved within the time limit are further expanded as polynomials of the bits of some deeper intermediate states with symbolic computation, whose terms are again processed with monomial predictions. The above procedure is iterated until all terms are resolved. Finally, all the sub-superpolies are collected and assembled into the superpoly of the targeted bit. We apply the new framework to Trivium, Grain-128AEAD, and Kreyvium. As a result, the exact ANFs of the superpolies for 843-, 844- and 845-round Trivium, 191-round Grain-128AEAD and 894-round Kreyvium are recovered. Moreover, with help of the Möbius transform, we present a novel key-recovery technique based on superpolies involving all key bits by exploiting the sparse structures, which leads to the best key-recovery attacks on the targets considered.

Due to the page limit, the appendix of this paper are included in the full version [23].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. eSTREAM: the ECRYPT stream cipher project (2018). https://www.ecrypt.eu.org/stream/. Accessed 23 Mar 2021

  2. Gorubi Optimization. https://www.gurobi.com

  3. Gorubi Optimization Reference Manual. https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf

  4. ISO/IEC 29192-3:2012: Information technology - Security techniques - Lightweight cryptography - part 3: Stream ciphers. https://www.iso.org/standard/56426.html

  5. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011)

    Article  Google Scholar 

  6. Bar-On, A., Keller, N.: A \(2^{70}\) attack on the full MISTY1. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 435–456. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_16

    Chapter  Google Scholar 

  7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: DAC 2015, pp. 175:1–175:6. ACM (2015)

    Google Scholar 

  8. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_24

    Chapter  Google Scholar 

  9. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

    Article  Google Scholar 

  10. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_18

  11. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

    Article  MathSciNet  Google Scholar 

  12. Chang, D., Turan, M.S.: Recovering the key from the internal state of Grain-128AEAD. IACR Cryptol. ePrint Arch. 2021, 439 (2021)

    Google Scholar 

  13. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052343

    Chapter  Google Scholar 

  14. Derbez, P., Fouque, P.-A.: Increasing precision of division property. IACR Trans. Symmetric Cryptol. 2020(4), 173–194 (2020)

    Article  Google Scholar 

  15. Derbez, P., Fouque, P.-A., Lambin, B.: Linearly equivalent S-boxes and the division property. IACR Cryptol. ePrint Arch. 2019, 97 (2019)

    MATH  Google Scholar 

  16. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_16

    Chapter  Google Scholar 

  17. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_26

    Chapter  Google Scholar 

  18. Hao, Y., Jiao, L., Li, C., Meier, W., Todo, Y., Wang, Q.: Links between division property and other cube attack variants. IACR Trans. Symmetric Cryptol. 2020(1), 363–395 (2020)

    Article  Google Scholar 

  19. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset. Improved cube attacks against Trivium and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_17

    Chapter  Google Scholar 

  20. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset. J. Cryptol. 34(3), 22 (2021)

    Article  MathSciNet  Google Scholar 

  21. Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_18

    Chapter  Google Scholar 

  22. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: Grain-128AEAD - a lightweight AEAD stream cipher. In: NIST Lightweight Cryptography, Round, 3 (2019)

    Google Scholar 

  23. Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q.: Massive superpoly recovery with nested monomial predictions. Cryptology ePrint Archive, Report 2021/1225 (2021). https://ia.cr/2021/1225

  24. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division property: revisiting degree evaluations, cube attacks, and key-independent sums. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15

    Chapter  Google Scholar 

  25. Hu, K., Wang, M.: Automatic search for a variant of division property using three subsets. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 412–432. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_21

    Chapter  Google Scholar 

  26. Kai, H., Wang, Q., Wang, M.: Finding bit-based division property for ciphers with complex linear layers. IACR Trans. Symmetric Cryptol. 2020(1), 236–263 (2020)

    Google Scholar 

  27. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16

    Chapter  Google Scholar 

  28. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9

    Chapter  Google Scholar 

  29. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography. The Springer International Series in Engineering and Computer Science (Communications and Information Theory), vol. 276. Springer, Boston (1994). https://doi.org/10.1007/978-1-4615-2694-0_23

  30. Lehmann, M., Meier, W.: Conditional differential cryptanalysis of Grain-128a. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_1

    Chapter  Google Scholar 

  31. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_8

    Chapter  Google Scholar 

  32. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052334

    Chapter  MATH  Google Scholar 

  33. Mroczkowski, P., Szmidt, J.: The cube attack on stream cipher Trivium and quadraticity tests. Fundam. Informaticae 114(3–4), 309–318 (2012)

    Article  MathSciNet  Google Scholar 

  34. Sasaki, Yu., Todo, Y.: New algorithm for modeling S-box in MILP based differential and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5_11

    Chapter  Google Scholar 

  35. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Chapter  Google Scholar 

  36. Sun, Y.: Cube attack against 843-round Trivium. IACR Cryptol. ePrint Arch. 2021, 547 (2021)

    Google Scholar 

  37. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_20

    Chapter  Google Scholar 

  38. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Chapter  Google Scholar 

  39. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_9

    Chapter  Google Scholar 

  40. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials based on division property. IACR Cryptol. ePrint Arch. 2017, 306 (2017)

    MATH  Google Scholar 

  41. Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18

    Chapter  Google Scholar 

  42. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division property based cube attacks exploiting algebraic properties of superpoly. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_10

    Chapter  Google Scholar 

  43. Wang, S., Hu, B., Guan, J., Zhang, K., Shi, T.: MILP-aided method of searching division property using three subsets and applications. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 398–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_14

    Chapter  Google Scholar 

  44. Wang, S.P., Bin, H., Guan, J., Zhang, K., Shi, T.: A practical method to recover exact superpoly in cube attack. IACR Cryptology ePrint Archive 2019, 259 (2019)

    Google Scholar 

  45. Wang, S., Bin, H., Guan, J., Zhang, K., Shi, T.: Exploring secret keys in searching integral distinguishers based on division property. IACR Trans. Symmetric Cryptol. 2020(3), 288–304 (2020)

    Article  Google Scholar 

  46. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

  47. Ye, C., Tian, T.: A new framework for finding nonlinear superpolies in cube attacks against Trivium-like ciphers. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 172–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_11

    Chapter  Google Scholar 

  48. Ye, C.-D., Tian, T.: Algebraic method to recover superpolies in cube attacks. IET Inf. Secur. 14(4), 430–441 (2020)

    Article  Google Scholar 

  49. Ye, C.-D., Tian, T.: A practical key-recovery attack on 805-round Trivium. IACR Cryptol. ePrint Arch. 2020, 1404 (2020)

    Google Scholar 

  50. Ye, C., Tian, T.: Revisit division property based cube attacks: key-recovery or distinguishing attacks? IACR Trans. Symmetric Cryptol. 2019(3), 81–102 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. Kai Hu and Meiqin Wang are supported by the National Natural Science Foundation of China (Grant No. 62002201, Grant No. 62032014), the National Key Research and Development Program of China (Grant No. 2018YFA0704702, 2018YFA0704704), the Major Scientific and Technological Innovation Project of Shandong Province, China (Grant No. 2019JZZY010133), the Major Basic Research Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR202010220025).   Siwei Sun is supported by the National Natural Science Foundation of China (61772519) and the Chinese Major Program of National Cryptography Development Foundation (MMJJ20180102). Qingju Wang is funded by Huawei Technologies Co., Ltd., (Agreement No.: YBN2020035184). The scientific calculations in this paper have been done on the HPC Cloud Platform of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, K., Sun, S., Todo, Y., Wang, M., Wang, Q. (2021). Massive Superpoly Recovery with Nested Monomial Predictions. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13090. Springer, Cham. https://doi.org/10.1007/978-3-030-92062-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92062-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92061-6

  • Online ISBN: 978-3-030-92062-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics