Skip to main content

(Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13093))

Abstract

This paper presents the first adaptively simulation secure functional encryption (FE) schemes for attribute-weighted sums. In such an FE scheme, encryption takes as input N pairs of attribute \(\{(x_i, z_i)\}_{i\in [N]}\) for some \(N\in \mathbb {N}\) where the attributes \(\{x_i\}_{i\in [N]}\) are public while the attributes \(\{z_i\}_{i\in [N]}\) are private. The indices \(i\in [N]\) are referred to as the slots. A secret key corresponds to some weight function f, and decryption recovers the weighted sum \(\sum _{i=1}^N f(x_i)z_i\). This is an important functionality with a wide range of potential real life applications. In the proposed FE schemes attributes are viewed as vectors and weight functions are arithmetic branching programs (ABP). We present two schemes with varying parameters and levels of adaptive security.

  1. (a)

    We first present a one-slot scheme that achieves adaptive security in the simulation-based security model against a bounded number of ciphertext queries and an arbitrary polynomial number of secret key queries both before and after the ciphertext queries. This is the best possible level of security one can achieve in the adaptive simulation-based framework. From the relations between the simulation-based and indistinguishability-based security frameworks for FE, it follows that the proposed FE scheme also achieves indistinguishability-based adaptive security against an a-priori unbounded number of ciphertext queries and an arbitrary polynomial number of secret key queries both before and after the ciphertext queries. Moreover, the scheme enjoys compact ciphertexts that do not grow with the number of appearances of the attributes within the weight functions.

  2. (b)

    Next, bootstrapping from the one-slot scheme, we present an unbounded-slot scheme that achieves simulation-based adaptive security against a bounded number of ciphertext and pre-ciphertext secret key queries while supporting an a-priori unbounded number of post-ciphertext secret key queries. The scheme achieves public parameters and secret key sizes independent of the number of slots N and a secret key can decrypt a ciphertext for any a-priori unbounded N. Further, just like the one-slot scheme, this scheme also has the ciphertext size independent of the number of appearances of the attributes within the weight functions. However, all the parameters of the scheme, namely, the master public key, ciphertexts, and secret keys scale linearly with the bound on the number of pre-ciphertext secret key queries.

Our schemes are built upon asymmetric bilinear groups of prime order and the security is derived under the standard (bilateral) k-Linear (k-Lin) assumption. Our work resolves an open problem posed by Abdalla, Gong, and Wee in CRYPTO 2020, where they presented an unbounded-slot FE scheme for attribute-weighted sum achieving only semi-adaptive simulation security. At a technical level, our work extends the recent adaptive security framework of Lin and Luo [EUROCRYPT 2020], devised to achieve compact ciphertexts in the context of indistinguishability-based payload-hiding security, into the setting of simulation-based adaptive attribute-hiding security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, by attribute-hiding, we mean the so-called “strong” attribute-hiding, as stipulated by the security definitions of FE, meaning that private attributes must remain hidden even to decryptors who are able to perform a successful decryption.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption with fine-grained access control. IACR Cryptology ePrint Archive, Report 2020/577 (2020)

    Google Scholar 

  3. Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted sums from k-Lin. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 685–716. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_23

    Chapter  Google Scholar 

  4. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_1

    Chapter  Google Scholar 

  5. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption from pairings. IACR Cryptology ePrint Archive, Report 2020/1285 (2020)

    Google Scholar 

  6. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 34–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_2

    Chapter  Google Scholar 

  7. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  8. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: FOCS 2011, pp. 120–129. IEEE Computer Society (2011)

    Google Scholar 

  9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  10. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-hiding predicate encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 640–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_22

    Chapter  Google Scholar 

  11. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-hiding predicate encryption. IEICE Trans. Inf. Syst. 103(7), 1556–1597 (2020)

    Article  Google Scholar 

  12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie–Hellman assumptions. J. Cryptol. 30(1), 242–288 (2015). https://doi.org/10.1007/s00145-015-9220-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_22

    Chapter  Google Scholar 

  14. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_54

    Chapter  MATH  Google Scholar 

  15. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9

    Chapter  Google Scholar 

  16. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for \({ {\sf NC}}^{1}\) from k-Lin. J. Cryptol. 33(3), 954–1002 (2019). https://doi.org/10.1007/s00145-019-09335-x

    Article  MATH  Google Scholar 

  17. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  18. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_27

    Chapter  Google Scholar 

  19. Lin, H., Luo, J.: Compact adaptively secure ABE from k-Lin: beyond \({\sf NC}^1\) and towards \({\sf NL}\). In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_9

    Chapter  Google Scholar 

  20. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: FOCS 2016, pp. 11–20. IEEE (2016)

    Google Scholar 

  21. Nisan, N.: Lower bounds for non-commutative computation (extended abstract). In: STOC 1991, pp. 410–418. ACM (1991)

    Google Scholar 

  22. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_35

    Chapter  Google Scholar 

  23. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_22

    Chapter  Google Scholar 

  24. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11

    Chapter  Google Scholar 

  25. Okamoto, T., Takashima, K.: Efficient (hierarchical) inner-product encryption tightly reduced from the decisional linear assumption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 96(1), 42–52 (2013)

    Article  Google Scholar 

  26. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report 2010/556 (2010)

    Google Scholar 

  27. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  28. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  29. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8

    Chapter  Google Scholar 

  30. Wee, H.: Functional encryption for quadratic functions from k-Lin, revisited. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 210–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pratish Datta or Tapas Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, P., Pal, T. (2021). (Compact) Adaptively Secure FE for Attribute-Weighted Sums from k-Lin. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13093. Springer, Cham. https://doi.org/10.1007/978-3-030-92068-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92068-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92067-8

  • Online ISBN: 978-3-030-92068-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics