Skip to main content

Simulation-Based Bi-Selective Opening Security for Public Key Encryption

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13091))

Abstract

Selective opening attacks (SOA) (for public-key encryption, PKE) concern such a multi-user scenario, where an adversary adaptively corrupts some fraction of the users to break into a subset of honestly created ciphertexts, and tries to learn the information on the messages of some unopened (but potentially related) ciphertexts. Until now, the notion of selective opening attacks is only considered in two settings: sender selective opening (SSO), where part of senders are corrupted and messages together with randomness for encryption are revealed; and receiver selective opening (RSO), where part of receivers are corrupted and messages together with secret keys for decryption are revealed.

In this paper, we consider a more natural and general setting for selective opening security. In the setting, the adversary may adaptively corrupt part of senders and receivers simultaneously, and get the plaintext messages together with internal randomness for encryption and secret keys for decryption, while it is hoped that messages of uncorrupted parties remain protected. We denote it as Bi-SO security since it is reminiscent of Bi-Deniability for PKE.

We first formalize the requirement of Bi-SO security by the simulation-based (SIM) style, and prove that some practical PKE schemes achieve SIM-Bi-\(\text {SO}\)-CCA security in the random oracle model. Then, we suggest a weak model of Bi-SO security, denoted as SIM-wBi-\(\text {SO}\)-CCA security, and argue that it is still meaningful and useful. We propose a generic construction of PKE schemes that achieve SIM-wBi-\(\text {SO}\)-CCA security in the standard model and instantiate them from various standard assumptions. Our generic construction is built on a newly presented primitive, namely, universal\(_{\kappa }\) hash proof system with key equivocability, which may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Very recently, Yang et al. [32] formalized the notion of RSO security in the multi-challenge setting. But their work only considers the receiver corruption setting.

  2. 2.

    Note that both SIM-Bi-SO-CCA and SIM-wBi-SO\(_{k}\)-CCA security capture the security requirements in a multi-user scenario, where multiple public/secret key pairs are involved. In this setting, some global information is needed to be generated by a global algorithm Setup, as done in previous works about multi-user security, such as [1].

  3. 3.

    The SIM-SSO-CPA security notion presented in [4] allows the adversary to query the \(\mathtt {MkRec}\) oracle multiple times.

  4. 4.

    Both [2, Theorem 5.1] and [2, Theorem 4.1] only hold in the the auxiliary input model (i.e., in the experiments defining SIM-RSO-CPA and SIM-SSO-CPA security, both the adversary and the simulator get an auxiliary input). So do our counterexamples in this section. These counterexamples may be modified with the technique proposed in [2, Sec. 6] to drop the auxiliary inputs.

  5. 5.

    Note that a hard SSMP is also a hard SMP, since a simple hybrid argument shows that for any PPT distinguisher \(\mathcal {D}\), \(|{\mathrm{Pr}}[\mathcal {D}({\mathsf{prm}},x_{\mathcal {X}})=1]-{\mathrm{Pr}}[\mathcal {D}({\mathsf{prm}},x_\mathcal {L})=1]|\le {\mathtt {Adv}}^{{\mathrm{HARD\hbox {-}1}}}_{{\mathsf{SSMP}}, \mathcal {D}, 1}(\lambda )+{\mathtt {Adv}}^{{\mathrm{HARD\hbox {-}2}}}_{{\mathsf{SSMP}}, \mathcal {D}, 1}(\lambda )\).

References

  1. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18

    Chapter  MATH  Google Scholar 

  2. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_38

    Chapter  Google Scholar 

  3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_1

    Chapter  Google Scholar 

  4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack. Cryptology ePrint Archive, Report 2009/101 (2009). https://eprint.iacr.org/2009/101

  5. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 298–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_11

    Chapter  Google Scholar 

  6. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_9

    Chapter  Google Scholar 

  7. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  9. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_20

    Chapter  Google Scholar 

  10. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  11. Hara, K., Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Simulation-based receiver selective opening CCA secure PKE from standard computational assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 140–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_8

    Chapter  Google Scholar 

  12. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_19

    Chapter  Google Scholar 

  13. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: constructions from general assumptions and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_4

    Chapter  Google Scholar 

  14. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of practical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 27–51. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_2

    Chapter  MATH  Google Scholar 

  15. Heuer, F., Poettering, B.: Selective opening security from simulatable data encapsulation. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 248–277. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_9

    Chapter  Google Scholar 

  16. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_14

    Chapter  Google Scholar 

  17. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguishability under selective opening. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 121–145. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_5

    Chapter  Google Scholar 

  18. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_25

    Chapter  Google Scholar 

  19. Huang, Z., Lai, J., Chen, W., Au, M.H., Peng, Z., Li, J.: Simulation-based selective opening security for receivers under chosen-ciphertext attacks. Des. Codes Crypt. 87(6), 1345–1371 (2018). https://doi.org/10.1007/s10623-018-0530-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_23

    Chapter  Google Scholar 

  21. Jia, D., Libert, B.: SO-CCA secure PKE from pairing based all-but-many lossy trapdoor functions. Des. Codes Crypt. 89(5), 895–923 (2021). https://doi.org/10.1007/s10623-021-00849-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Jia, D., Lu, X., Li, B.: Receiver selective opening security from indistinguishability obfuscation. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 393–410. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_22

    Chapter  Google Scholar 

  23. Jia, D., Lu, X., Li, B.: Constructions secure against receiver selective opening and chosen ciphertext attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 417–431. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_24

    Chapter  Google Scholar 

  24. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_5

    Chapter  Google Scholar 

  25. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_12

    Chapter  Google Scholar 

  26. Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE from key encapsulation mechanisms. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 3–26. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_1

    Chapter  Google Scholar 

  27. Lyu, L., Liu, S., Han, S., Gu, D.: Tightly SIM-SO-CCA secure public key encryption from standard assumptions. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 62–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_3

    Chapter  Google Scholar 

  28. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13

    Chapter  Google Scholar 

  29. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

  30. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  31. Steinfeld, R., Baek, J., Zheng, Y.: On the necessity of strong assumptions for the security of a class of asymmetric encryption schemes. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 241–256. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_20

    Chapter  MATH  Google Scholar 

  32. Yang, R., Lai, J., Huang, Z., Au, M.H., Xu, Q., Susilo, W.: Possibility and impossibility results for receiver selective opening secure PKE in the multi-challenge setting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 191–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_7

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank Fangguo Zhang for the helpful discussions. We appreciate the anonymous reviewers for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61922036, U2001205, 61702125, 61802078, 61825203, U1736203, 61732021), Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008), National Key Research and Development Plan of China (Grant No. 2020YFB1005600), Guangdong Provincial Science and Technology Project (Grant No. 2017B010111005), and National Joint Engineering Research Center for Network Security Detection and Protection Technology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

A Cryptographic Assumptions

A Cryptographic Assumptions

The DDH Assumption. Let \(\mathbb {G}\) be a cyclic group of prime order q with a generator g. The DDH assumption requires that it is hard to distinguish \((g^a,g^b,g^c)\) and \((g^a,g^b,g^{ab})\), where \(a,b,c {\leftarrow }\mathbb {Z}_q\).

The DCR Assumption. Now, we recall the Decision Composite Residuosity (DCR) assumption [30] and some useful facts about it shown in [8].

Let \(p,q,p',q'\) be primes such that \(p=2p'+1\) and \(q=2q'+1\). Let \(N=pq\) and \(N'=p'q'\). Then the group \(\mathbb {Z}^*_{N^2}\) can be decomposed as the direct product \(\mathbb {G}_N \cdot \mathbb {G}_{N'} \cdot \mathbb {G}_2 \cdot \mathbb {T}\), where \(\mathbb {G}_{N'}\) and \(\mathbb {G}_2\) are cyclic groups of order \(N'\) and order 2 respectively; \(\mathbb {G}_N\) is a cyclic group of order N generated by \(\xi =(1+N) \mod N^2\); and \(\mathbb {T}\) is the order-2 subgroup of \(\mathbb {Z}^*_{N^2}\) generated by \((-1 \mod N^2)\). Note that \(\xi ^a = (1+aN) \mod N^2\) for \(a\in \{0,1,\cdots ,N\}\).

The DCR assumption requires that it is hard to distinguish a random element in \(\mathbb {Z}^*_{N^2}\) and a random element in \(\mathbb {G}_{N'} \cdot \mathbb {G}_2 \cdot \mathbb {T}\).

Next, define \(\mathbb {X}=\mathbb {G}_N \cdot \mathbb {G}_{N'} \cdot \mathbb {T}\). The set \(\mathbb {X}\) is an efficiently samplable and explainable domain, where the sample algorithm and the explain algorithm work as follows:

  • Sample: The sample algorithm proceeds as follows:

    1. 1.

      For \(i\in [1,160]\):

      1. (a)

        \(x{\leftarrow }\mathbb {Z}_{N^2}\)

      2. (b)

        If the Jacobi symbol \((\frac{x}{N}) = 1\): output x.

    2. 2.

      Output \(\perp \).

  • Explain: on input an element \(x \in \mathbb {X}\), the explain algorithm proceeds as follows:

    1. 1.

      Set \(\mathsf {r}\) to be an empty string.

    2. 2.

      For \(i\in [1,160]\):

      1. (a)

        Sample \(b{\leftarrow }\{0,1\}\).

      2. (b)

        If \(b=1\), append x to \(\mathsf {r}\) and outputs \(\mathsf {r}\).

      3. (c)

        Otherwise, sample an element \(x'{\leftarrow }\mathbb {Z}_{N^2}\) s.t. the Jacobi symbol \((\frac{x'}{N})=-1\) and append \(x'\) to \(\mathsf {r}\).

    3. 3.

      Output \(\perp \).

Note that as \(\frac{|\mathbb {X} |}{|\mathbb {Z}^*_{N^2} |}=1/2\), the expected repetition in the sample algorithm is about 2 and the probability that the sample algorithm outputs \(\perp \) is \(\frac{1}{2^{160}}\), which is negligible. Also, it is easy to see the probability that the explain algorithm outputs \(\perp \) is also \(\frac{1}{2^{160}}\), which is negligible.

Also, define \(\chi : \mathbb {Z}_{N^2} \rightarrow \mathbb {Z}_N\) as \(\chi (a)=\lfloor a/N \rfloor \). For any fixed \(x\in \mathbb {X}\), \(\chi (x \xi ^c)\) is uniform in \(\mathbb {Z}_N\) if \(c {\leftarrow }\mathbb {Z}_N\).

Finally, define \(\mathbb {L}=\mathbb {G}_{N'} \cdot \mathbb {T}\). It is easy to create a generator g for \(\mathbb {L}\) by first sampling a random element \(\mu \in \mathbb {Z}^*_{N^2}\) and then computing \(g=-\mu ^{2N}\). Besides, the DCR assumption implies that a random element in \(\mathbb {X}\) is computationally indistinguishable from a random element in \(\mathbb {L}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, J., Yang, R., Huang, Z., Weng, J. (2021). Simulation-Based Bi-Selective Opening Security for Public Key Encryption. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13091. Springer, Cham. https://doi.org/10.1007/978-3-030-92075-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92075-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92074-6

  • Online ISBN: 978-3-030-92075-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics