Abstract
The security proofs of leakage-resilient MACs based on symmetric building blocks currently rely on idealized assumptions that hardly translate into interpretable guidelines for the cryptographic engineers implementing these schemes. In this paper, we first present a leakage-resilient MAC that is both efficient and secure under standard and easily interpretable black box and physical assumptions. It only requires a collision resistant hash function and a single call per message authentication to a Tweakable Block Cipher (\(\mathsf {TBC}\)) that is unpredictable with leakage. This construction leverages two design twists: large tweaks for the \(\mathsf {TBC}\) and a verification process that checks the inverse \(\mathsf {TBC}\) against a constant. It enjoys beyond birthday security bounds. We then discuss the cost of getting rid of these design twists. We show that security can be proven without them as well. Yet, a construction without large tweaks requires stronger (non idealized) assumptions and may incur performance overheads if specialized \(\mathsf {TBC}\)s with large tweaks can be exploited, and a construction without twisted verification requires even stronger assumptions (still non idealized) and leads to more involved bounds. The combination of these results makes a case for our first pragmatic construction and suggests the design of \(\mathsf {TBC}\)s with large tweaks and good properties for side-channel countermeasures as an interesting challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Adversaries are sometimes allowed to “model” the leakage. For this purpose, we grant them access to the oracle \(\mathsf {L}\). This oracle is peculiar since it allows the adversary to make queries not only on inputs x but also of keys \(k'\) of its choice.
- 2.
Degabriele et al. give an alternative definition in [14]. The main difference is that the set of inputs (\(\mathcal {S}\) in their definition, \(\mathcal {L}\) in ours) is not increased for inputs X for which only the leakage is observed, while we always give access to both the primitive’s output and their leakage. Hence, this definition cannot be satisfied in the unbounded leakage model as we aim, since the adversary can then get a valid tag in full. (Their motivation was also different from ours and specially tailored for analyzing constructions leveraging leakage-resilient PRFs).
- 3.
h can be computed by the adversary since the key s of the hash function is public.
- 4.
\(i \overset{\%}{=} j\) means that if i comes from a tag-generation query and j from a verification query, or vice-versa, then they are considered differently.
- 5.
In the black box setting (i.e., without leakage), the security of this construction is beyond birthday since \((q_V+1)~\epsilon _{\mathsf {sUP}\text {-}\mathsf {L2}} \le \epsilon _{\mathsf {sPRP}} + \frac{q_V+1}{2^{128}-q_M-q_V}\), which is optimal.
- 6.
The choice to reuse v as the only tweak of the \(\mathsf {TBC}\) in our design is crucial. With distinct tweaks the security bound will be much more loose. Among other advantages, here, we only have to deal with the verification queries.
- 7.
The latter trick was also used in [8].
References
An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: message authentication under weakened assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 252–269. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_16
Andreeva, E., Stam, M.: The symbiosis between collision and preimage resistance. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 152–171. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-8_10
Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.: The preimage security of double-block-length compression functions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_13
Azouaoui, M., et al.: A systematic appraisal of side channel evaluation strategies. In: van der Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS, vol. 12529, pp. 46–66. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64357-7_3
Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_23
Bellizia, D., et al.: Mode-level vs. implementation-level physical security in symmetric cryptography. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 369–400. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_13
Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resistant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_5
Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.-X.: Strong authenticity with leakage under weak and falsifiable physical assumptions. In: Liu, Z., Yung, M. (eds.) Inscrypt 2019. LNCS, vol. 12020, pp. 517–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42921-8_31
Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.: Tedt, a leakage-resist AEAD mode for high physical security applications. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1), 256–320 (2020)
Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.: Ciphertext integrity with misuse and leakage: definition and efficient constructions with symmetric primitives. In: AsiaCCS, pp. 37–50. ACM (2018)
Berti, F., Pereira, O., Peters, T., Standaert, F.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3), 271–293 (2017)
Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_4
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)
Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authenticated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_8
Dobraunig, C., et al.: Isap v2.0. IACR Transactions of Symmetric Cryptology 2020(S1), 390–416 (2020)
Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 225–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_8
Dobraunig, C., Mennink, B.: Leakage resilient value comparison with application to message authentication. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 377–407. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_13
Dodis, Y., Steinberger, J.: Message authentication codes from unpredictable block ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_16
Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday barrier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_19
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE Computer Society (2008)
Fuller, B., Hamlin, A.: Unifying leakage classes: simulatable leakage and pseudoentropy. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 69–86. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17470-9_5
Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_20
Guo, C., Pereira, O., Peters, T., Standaert, F.: Towards low-energy leakage-resistant authenticated encryption from the duplex sponge construction. IACR Trans. Symmetric Cryptol. 2020(1), 6–42 (2020)
Guo, C., Standaert, F., Wang, W., Yu, Y.: Efficient side-channel secure message authentication with better bounds. IACR Trans. Symmetric Cryptol. 2019(4), 23–53 (2019)
Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_10
Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_14
Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15
Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1. 41. CAESAR Competition, Final Portfolio (2016)
Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC Press (2014)
Krämer, J., Struck, P.: Leakage-resilient authenticated encryption from leakage-resilient pseudorandom functions. In: Bertoni, G.M., Regazzoni, F. (eds.) COSADE 2020. LNCS, vol. 12244, pp. 315–337. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68773-1_15
Martin, D.P., Oswald, E., Stam, M., Wójcik, M.: A leakage resilient MAC. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 295–310. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9_18
Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16
Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: CCS, pp. 96–108. ACM (2015)
Schipper, J.: Leakage-resilient authentication. Master’s thesis (2011)
Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40. Springer, Heidelberg (2006). https://doi.org/10.1007/11927587_5
Zhang, L., Wu, W., Wang, P., Zhang, L., Wu, S., Liang, B.: Constructing rate-1 MACs from related-key unpredictable block ciphers: PGV model revisited. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 250–269. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_14
Acknowledgments
We thank the ASIACRYPT 2021 reviewers for their insightful feedback. Francesco Berti was founded by the Emmy Noether Program FA 1320/1-1 of the German Research Foundation (DFG). Chun Guo was supported in parts by the Program of Taishan Young Scholars of the Shandong Province, the Program of Qilu Young Scholars (Grant No. 6158008996 3177) of Shandong University, the National Natural Science Foundation of China (Grant No. 62002202), and the Shandong Nature Science Foundation of China (Grant No. ZR2020MF053). Thomas Peters and François-Xavier Standaert are research associate and senior research associate of the Belgian Fund for Scientific Research (F.R.S.-FNRS). This work has been funded in parts by the EU through the ERC project SWORD (724725).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Berti, F., Guo, C., Peters, T., Standaert, FX. (2021). Efficient Leakage-Resilient MACs Without Idealized Assumptions. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13091. Springer, Cham. https://doi.org/10.1007/978-3-030-92075-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-92075-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92074-6
Online ISBN: 978-3-030-92075-3
eBook Packages: Computer ScienceComputer Science (R0)