Abstract
In this paper, we propose a new block cipher-based authenticated encryption scheme, dubbed the Synthetic Counter with Masking (\(\mathsf {SCM}\)) mode. \(\mathsf {SCM}\) follows the \(\mathsf {NSIV}\) paradigm proposed by Peyrin and Seurin (CRYPTO 2016), where a keyed hash function accepts a nonce N with associated data and a message, yielding an authentication tag T, and then the message is encrypted by a counter-like mode using both T and N. Here we move one step further by encrypting nonces; in the encryption part, the inputs to the block cipher are determined by T, counters, and an encrypted nonce, and all its outputs are also masked by an (additional) encrypted nonce, yielding keystream blocks.
As a result, we obtain, for the first time, a block cipher-based authenticated encryption scheme of rate 1/2 that provides n-bit security with respect to the query complexity (ignoring the influence of message length) in the nonce-respecting setting, and at the same time guarantees graceful security degradation in the faulty nonce model, when the underlying n-bit block cipher is modeled as a secure pseudorandom permutation. Seen as a slight variant of \(\mathsf {GCM}\)-\(\mathsf {SIV}\), \(\mathsf {SCM}\) is also parallelizable and inverse-free, and its performance is still comparable to \(\mathsf {GCM}\)-\(\mathsf {SIV}\).
J. Lee—This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government (MSIT) (No. 2019-0-01343, Regional strategic industry convergence security core talent training business).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\mathsf {POLYVAL}\) is a universal hash function used in \(\mathsf {AES}\)-\(\mathsf {GCM}\)-\(\mathsf {SIV}\).
- 2.
- 3.
- 4.
We will view \(\mathsf {S}\) and \(\mathsf {R}\) as random variables, and also write them to denote their probability distributions.
- 5.
A trail is a walk in which all edges are distinct.
- 6.
We assume that either \(|A|>0\) or \(|M|>0\).
- 7.
References
Andreeva, E., et al.: COLM v1. Submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/colmv1.pdf
Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_25
Bhattacharya, S., Nandi, M.: Revisiting variable output length XOR pseudorandom function. IACR Trans. Symmetric Cryptol. 2018(1), 314–335 (2018)
Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user security, faster key derivation, and better bounds. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_18
Choi, W., Lee, B., Lee, J., Lee, Y.: Toward a fully secure authenticated encryption scheme from a pseudorandom permutation. IACR Cryptology ePrint Archive, Report 2021/1168 (2021). http://eprint.iacr.org/2021/1168
Choi, W., Lee, B., Lee, Y., Lee, J.: Improved security analysis for nonce-based enhanced hash-then-mask MACs. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 697–723. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_23
Datta, N., Dutta, A., Nandi, M., Yasuda, K.: Encrypt or decrypt? To make a single-key beyond birthday secure nonce-based MAC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 631–661. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_21
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/asconv12.pdf
Dutta, A., Nandi, M., Talnikar, S.: Beyond birthday bound secure MAC in faulty nonce model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 437–466. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_15
Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: nonce misuse-resistant authenticated encryption. RFC 8452, April 2019
Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated encryption at under one cycle per byte. In: Ray, I. (ed.) ACM SIGSAC Conference on Computer and Communications Security - CCS 2015, pp. 109–119. Association for Computing Machinery (2015)
Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_2
Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_1
Iwata, T.: Authenticated encryption mode for beyond the birthday bound security. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_9
Iwata, T., Minematsu, K.: Stronger security variants of GCM-SIV. IACR Trans. Symmetric Cryptol. 2016(1), 134–157 (2016)
Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweakable block cipher mode for highly secure message authentication. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 34–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_2
Iwata, T., Seurin, Y.: Reconsidering the security bound of AES-GCM-SIV. IACR Trans. Symmetric Cryptol. 2017(4), 240–267 (2017)
Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/deoxysv141.pdf
Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_18
Krovetz, T., Rogaway, P.: OCB (v1.1). Submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/ocbv11.pdf
McGrew, D.A., Viega, J.: The security and performance of the Galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_27
Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. RFC 7539 (2015)
Patarin, J.: Introduction to mirror theory: analysis of systems of linear equalities and linear non equalities for cryptography. IACR Cryptology ePrint Archive, Report 2010/287 (2010). http://eprint.iacr.org/2010/287
Patarin, J.: Mirror theory and cryptography. IACR Cryptology ePrint Archive, Report 2016/702 (2016). http://eprint.iacr.org/2016/702
Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_2
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23
Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Submission to NIST (2002). https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
Wu, H.: ACORN: a lightweight authenticated cipher (v3). Submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/acornv3.pdf
Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm (v1.1). Submission to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/aegisv11.pdf
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Choi, W., Lee, B., Lee, J., Lee, Y. (2021). Toward a Fully Secure Authenticated Encryption Scheme from a Pseudorandom Permutation. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13092. Springer, Cham. https://doi.org/10.1007/978-3-030-92078-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-92078-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92077-7
Online ISBN: 978-3-030-92078-4
eBook Packages: Computer ScienceComputer Science (R0)