Abstract
Universum twin support vector machine (\( \mathfrak {U} \)-TSVM) is an efficient method for binary classification problems . In this paper, we improve the \( \mathfrak {U} \)-TSVM algorithm and propose an improved Universum twin bounded support vector machine (named as IUTBSVM) . Indeed, by introducing a different Lagrangian function for the primal problems, we obtain new dual formulations so that we do not need to compute inverse matrices. Also to reduce the computational time of the proposed method, we suggest smaller size of the rectangular kernel matrices than the other methods. Numerical experiments on several UCI benchmark data sets indicate that the IUTBSVM is more efficient than the other three algorithms, namely \(\mathfrak {U}\)-SVM, TSVM, and \(\mathfrak {U}\)-TSVM in sense of the classification accuracy.
The authors were supported by the Czech Science Foundation Grant P403-18-04735S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arabasadi, Z., Alizadehsani, R., Roshanzamir, M., Moosaei, H., Yarifard, A.A.: Computer aided decision making for heart disease detection using hybrid neural network-genetic algorithm. Comput. Methods Programs Biomed. 141, 19–26 (2017)
Bazikar, F., Ketabchi, S., Moosaei, H.: Dc programming and DCA for parametric-margin \(\nu \)-support vector machine. Appl. Intell. 50(6), 1763–1774 (2020)
Cai, Y.D., Ricardo, P.W., Jen, C.H., Chou, K.C.: Application of SVM to predict membrane protein types. .f Theoret. Biol. 226(4), 373–376 (2004)
Cherkassky, V., Mulier, F.M.: Learning from Data: Concepts, Theory, and Methods. Wiley, New York (2007)
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003). https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Jayadeva, Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Patt. Anal. Mach. Intell. 29(5), 905–910 (2007)
Ketabchi, S., Moosaei, H., Razzaghi, M., Pardalos, P.M.: An improvement on parametric \(\nu \) -support vector algorithm for classification. Ann. Oper. Res. 276(1–2), 155–168 (2019)
Liu, C.L., Hsaio, W.H., Lee, C.H., Chang, T.H., Kuo, T.H.: Semi-supervised text classification with universum learning. IEEE Trans. Cybernet. 46(2), 462–473 (2015)
Mangasarian, O.L., Wild, E.W.: Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans. Patt. Anal. Mach. Intell. 28(1), 69–74 (2005)
Moosaei, H., Ketabchi, S., Razzaghi, M., Tanveer, M.: Generalized twin support vector machines. Neural Process. Lett. 53(2), 1545–1564 (2021)
Noble, W.S.: Support vector machine applications in computational biology. In: Schoelkopf, B., Tsuda, K., Vert, J.P. (eds.) Kernel Methods in Computational Biology, pp. 71–92. MIT Press, Cambridge(2004)
Qi, Z., Tian, Y., Shi, Y.: Twin support vector machine with universum data. Neural Netw. 36, 112–119 (2012)
Richhariya, B., Tanveer, M.: EEG signal classification using universum support vector machine. Exp. Syst. Appl. 106, 169–182 (2018)
Sinz, F.H., Chapelle, O., Agarwal, A., Schölkopf, B.: An analysis of inference with the universum. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, NIPS 2007, pp. 1369–1376., Curran Associates Inc., Red Hook (2008)
Tang, L., Tian, Y., Li, W., Pardalos, P.M.: Structural improved regular simplex support vector machine for multiclass classification. Appl. Soft Compu. 91, 106235 (2020)
Tang, L., Tian, Y., Li, W., Pardalos, P.M.: Valley-loss regular simplex support vector machine for robust multiclass classification. Knowl. Based Syst. 216, 106801 (2021)
Tang, L., Tian, Y., Pardalos, P.M.: A novel perspective on multiclass classification: regular simplex support vector machine. Inf. Sci. 480, 324–338 (2019)
Tang, L., Tian, Y., Yang, C., Pardalos, P.M.: Ramp-loss nonparallel support vector regression: robust, sparse and scalable approximation. Knowl.-Based Syst. 147, 55–67 (2018)
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-3264-1
Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition. Nauka, Moscow (1974)
Wang, X.Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector machine classification. Patt. Recogn. 44(4), 777–787 (2011)
Weston, J., Collobert, R., Sinz, F., Bottou, L., Vapnik, V.: Inference with the universum. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 1009–1016 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Moosaei, H., Hladík, M. (2021). Inverse Free Universum Twin Support Vector Machine. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds) Learning and Intelligent Optimization. LION 2021. Lecture Notes in Computer Science(), vol 12931. Springer, Cham. https://doi.org/10.1007/978-3-030-92121-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-92121-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92120-0
Online ISBN: 978-3-030-92121-7
eBook Packages: Computer ScienceComputer Science (R0)