Abstract
Big data methods prevail in the biomedical domain leading to effective and scalable data-driven approaches. Biomedical data are known for their ultra-high dimensionality, especially the ones coming from molecular biology experiments. This property is also included in the emerging technique of single-cell RNA-sequencing (scRNA-seq), where we obtain sequence information from individual cells. A reliable way to uncover their complexity is by using Machine Learning approaches, including dimensional reduction and feature selection methods. Although the first choice has had remarkable progress in scRNA-seq data, only the latter can offer deeper interpretability at the gene level since it highlights the dominant gene features in the given data. Towards tackling this challenge, we propose a feature selection framework that utilizes genetic optimization principles and identifies low-dimensional combinations of gene lists in order to enhance classification performance of any off-the-shelf classifier (e.g., LDA or SVM). Our intuition is that by identifying an optimal genes subset, we can enhance the prediction power of scRNA-seq data even if these genes are unrelated to each other. We showcase our proposed framework’s effectiveness in two real scRNA-seq experiments with gene dimensions up to 36708. Our framework can identify very low-dimensional subsets of genes (less than 200) while boosting the classifiers’ performance. Finally, we provide a biological interpretation of the selected genes, thus providing evidence of our method’s utility towards explainable artificial intelligence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We define \(\mathbb {B}\) as the space of Boolean variables.
- 2.
We have 20 runs/replicates.
References
Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: 2007 IEEE Congress on Evolutionary Computation, pp. 284–290. IEEE (2007)
Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)
Andrews, T.S., Hemberg, M.: M3drop: dropout-based feature selection for scrnaseq. Bioinformatics 35(16), 2865–2867 (2019)
Athar, A., et al.: Arrayexpress update-from bulk to single-cell expression data. Nucleic Acids Res. 47(D1), D711–D715 (2019)
Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38 (2019)
Brown, M.P., et al.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Nat. Acad. Sci. 97(1), 262–267 (2000)
Buettner, F., et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33(2), 155–160 (2015)
Chattopadhyay, A., Lu, T.P.: Gene-gene interaction: the curse of dimensionality. Ann. Transl. Med. 7(24) (2019)
Chatzilygeroudis, K., Hatzilygeroudis, I., Perikos, I.: Machine learning basics. In: Intelligent Computing for Interactive System Design: Statistics, Digital Signal Processing, and Machine Learning in Practice, pp. 143–193 (2021)
Clough, E., Barrett, T.: The gene expression omnibus database. In: Mathé, E., Davis, S. (eds.) Statistical Genomics. MMB, vol. 1418, pp. 93–110. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3578-9_5
Collins, F.S., Morgan, M., Patrinos, A.: The human genome project: lessons from large-scale biology. Science 300(5617), 286–290 (2003)
Dhaenens, C., Jourdan, L.: Metaheuristics for data mining. 4OR 17(2), 115–139 (2019). https://doi.org/10.1007/s10288-019-00402-4
Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97(457), 77–87 (2002)
Estévez, P.A., Caballero, R.E.: A Niching genetic algorithm for selecting features for neural network classifiers. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.) ICANN 1998. PNC, pp. 311–316. Springer, London (1998). https://doi.org/10.1007/978-1-4471-1599-1_45
Feng, Z., et al.: scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization. Bioinformatics 36(8), 2474–2485 (2020)
Hedlund, E., Deng, Q.: Single-cell RNA sequencing: technical advancements and biological applications. Mol. Aspects Med. 59, 36–46 (2018)
Hong, J.H., Cho, S.B.: Efficient huge-scale feature selection with speciated genetic algorithm. Pattern Recogn. Lett. 27(2), 143–150 (2006)
Huang, X., Liu, S., Wu, L., Jiang, M., Hou, Y.: High throughput single cell RNA sequencing, bioinformatics analysis and applications. In: Gu, J., Wang, X. (eds.) Single Cell Biomedicine. AEMB, vol. 1068, pp. 33–43. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0502-3_4
Khalifa, N.E.M., Taha, M.H.N., Ali, D.E., Slowik, A., Hassanien, A.E.: Artificial intelligence technique for gene expression by tumor RNA-seq data: a novel optimized deep learning approach. IEEE Access 8, 22874–22883 (2020)
Liang, S., Ma, A., Yang, S., Wang, Y., Ma, Q.: A review of matched-pairs feature selection methods for gene expression data analysis. Comput. Struct. Biotechnol. J. 16, 88–97 (2018)
Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y.: Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16(3), 243–245 (2019)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. John Wiley & Sons, New York (2004)
Moon, M., Nakai, K.: Stable feature selection based on the ensemble l 1-norm support vector machine for biomarker discovery. BMC Genom. 17(13), 65–74 (2016)
Poirion, O.B., Zhu, X., Ching, T., Garmire, L.: Single-cell transcriptomics bioinformatics and computational challenges. Front. Genet. 7, 163 (2016)
Qi, R., Ma, A., Ma, Q., Zou, Q.: Clustering and classification methods for single-cell RNA-sequencing data. Briefings Bioinform. 21(4), 1196–1208 (2020)
Regev, A., et al.: Science forum: the human cell atlas. Elife 6, e27041 (2017)
Scialdone, A., et al.: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54–61 (2015)
Shendure, J., et al.: DNA sequencing at 40: past, present and future. Nature 550(7676), 345 (2017)
Taguchi, Y.: Principal component analysis-based unsupervised feature extraction applied to single-cell gene expression analysis. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 816–826. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_90
Townes, F.W., Hicks, S.C., Aryee, M.J., Irizarry, R.A.: Feature selection and dimension reduction for single-cell RNA-seq based on a multinomial model. Genome Biol. 20(1), 1–16 (2019)
Treutlein, B., et al.: Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500), 371 (2014)
Vrahatis, A.G., Tasoulis, S.K., Maglogiannis, I., Plagianakos, V.P.: Recent machine learning approaches for single-cell RNA-seq data analysis. In: Maglogiannis, I., Brahnam, S., Jain, L.C. (eds.) Advanced Computational Intelligence in Healthcare-7. SCI, vol. 891, pp. 65–79. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61114-2_5
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14(4), 414 (2017)
Witten, D.M., et al.: Classification and clustering of sequencing data using a Poisson model. Ann. Appl. Stat. 5(4), 2493–2518 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chatzilygeroudis, K.I., Vrahatis, A.G., Tasoulis, S.K., Vrahatis, M.N. (2021). Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds) Learning and Intelligent Optimization. LION 2021. Lecture Notes in Computer Science(), vol 12931. Springer, Cham. https://doi.org/10.1007/978-3-030-92121-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-92121-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92120-0
Online ISBN: 978-3-030-92121-7
eBook Packages: Computer ScienceComputer Science (R0)