Skip to main content

Electromagnetism-Enabled Transmitter of Molecular Communications Using Ca\(^{2+}\) Signals

  • Conference paper
  • First Online:
Bio-Inspired Information and Communications Technologies (BICT 2021)

Abstract

Molecular Communications provides a promising solution to achieve precise control and process of bio-things in applications of Healthcare-IoT. In this paper, we investigates the mechanism of electromagnetism-induced molecular communications (EMC) among non-excitable biological cell networks. We choose calcium signals as the physical information carrier to study the paradigm of EMC. Firstly, an electromagnetism-potential coupling model is established to study the electric-magnetic induction behaviour of cellular membrane potential. Then, an Ca\(^{2+}\) oscillation model is established to study the relation between membrane potential and Ca\(^{2+}\) signals. Further, we validate the waveform patterning of calcium signaling by applying various intensities and frequencies of electromagnetism. This paper shows the relations between electromagnetism stimuli and calcium oscillation through mathematical modeling and numerical experiments. We find that there exists a resonance behavior between electromagnetism and calcium signals, namely calcium signals oscillate via a similar frequency with the electromagnetism. This paper reveals that molecular communication can be effectively induced by traditional electromagnetic signals.

Supported by the National Natural Science Foundation of China (Grant No. 61901070, 61871062, 61771082, 61801065), partially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201900611, KJQN201900604), and partially supported by Program for Innovation Team Building at Institutions of Higher Education in Chongqing (Grant No. CXTDX201601020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Brunetti, F., Blazquez, C.: Nanonetworks: a new communication paradigm. Comput. Netw. 52(12), 2260–2279 (2008)

    Article  Google Scholar 

  2. Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C., Guo, W.: A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutor. 18(3), 1887–1919 (2016). https://doi.org/10.1109/COMST.2016.2527741

    Article  Google Scholar 

  3. Aslan, E., Pekergin, F., Çelebi, M.E.: Receiver detection methods on molecular communications. In: 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2020). https://doi.org/10.1109/SIU49456.2020.9302509

  4. Chou, C.T.: Maximum a-posteriori decoding for diffusion-based molecular communication using analog filters. IEEE Trans. Nanotechnol. 14(6), 1054–1067 (2015). https://doi.org/10.1109/TNANO.2015.2469301

    Article  CAS  Google Scholar 

  5. Mosayebi, R., Gohari, A., Mirmohseni, M., Nasiri-Kenari, M.: Type-based sign modulation and its application for ISI mitigation in molecular communication. IEEE Trans. Commun. 66(1), 180–193 (2018). https://doi.org/10.1109/TCOMM.2017.2754492

    Article  Google Scholar 

  6. Kışlal, A.O., Pusane, A.E., Tuğcu, T.: A comparative analysis of channel coding for molecular communication. In: 2018 26th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2018). https://doi.org/10.1109/SIU.2018.8404368

  7. Nakano, T., Okaie, Y., Liu, J.: Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun. Lett. 16(6), 797–800 (2012). https://doi.org/10.1109/LCOMM.2012.042312.120359

    Article  Google Scholar 

  8. Luo, Z., Lin, L., Guo, W., Wang, S., Liu, F., Yan, H.: One symbol blind synchronization in SIMO molecular communication systems. IEEE Wirel. Commun. Lett. 7(4), 530–533 (2018). https://doi.org/10.1109/LWC.2018.2793197

    Article  Google Scholar 

  9. Salehi, S., Moayedian, N.S., Javanmard, S.H., Alarcón, E.: Lifetime improvement of a multiple transmitter local drug delivery system based on diffusive molecular communication. IEEE Trans. Nanobiosci. 17(3), 352–360 (2018). https://doi.org/10.1109/TNB.2018.2850054

    Article  Google Scholar 

  10. Nakano, T., Okaie, Y., Vasilakos, A.V.: Transmission rate control for molecular communication among biological nanomachines. IEEE J. Sel. Areas Commun. 31(12), 835–846 (2013)

    Article  Google Scholar 

  11. Dhayabaran, B., Raja, G.T., Magarini, M., Yilmaz, H.B.: Transmit signal shaping for molecular communication. IEEE Wirel. Commun. Lett. 10(7), 1459–1463 (2021). https://doi.org/10.1109/LWC.2021.3069875

    Article  Google Scholar 

  12. Morishima, K., Fukuda, T., Arai, F., Matsuura, H., Yoshikawa, K.: Noncontact transportation of DNA molecule by dielectrophoretic force for micro DNA flow system. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2214–2219 (1996). https://doi.org/10.1109/ROBOT.1996.506493

  13. Zhang, T., et al.: Molecular association between diabetes-specific local gene network and nutrient metabolism modules. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering, pp. 1–5 (2010). https://doi.org/10.1109/ICBBE.2010.5517883

  14. Panagopoulos, D.J., Messini, N., Karabarbounis, A., Philippetis, A.L., Margaritis, L.H.: A mechanism for action of oscillating electric fields on cells. Biochem. Biophys. Res. Commun. 272(3), 634–640 (2000)

    Article  CAS  Google Scholar 

  15. Ming-Yan, L., Kun, S., Xu, Z., Imshik, L.: Mechanism for alternating electric fields induced-effects on cytosolic calcium. Chin. Phys. Lett. 26(3), 017102 (2000)

    Google Scholar 

  16. Goldbeter, A., Dupont, G., Berridge, M.J.: Minimal model for signal-induced Ca\(^{2+}\) oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 87(4), 1461–1465 (1990)

    Article  CAS  Google Scholar 

  17. Kepseu, W.D., Woafo, P.: Intercellular waves propagation in an array of cells coupled through paracrine signaling: a computer simulation study. Phys. Rev. 73, 041912 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, P., Tang, D. (2021). Electromagnetism-Enabled Transmitter of Molecular Communications Using Ca\(^{2+}\) Signals. In: Nakano, T. (eds) Bio-Inspired Information and Communications Technologies. BICT 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-030-92163-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92163-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92162-0

  • Online ISBN: 978-3-030-92163-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics