Skip to main content

Detachment of Microtubules Driven by Kinesin Motors from Track Surfaces Under External Force

  • Conference paper
  • First Online:
Bio-Inspired Information and Communications Technologies (BICT 2021)

Abstract

Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and material transport in living cells. Motor proteins and their associated cytoskeletal filaments, such as actin filaments and microtubules, have been utilized for active transport in engineered systems. In controlling the active transport, external forces via electric fields or fluid flow were commonly used. A drawback of using external force is that the external force can cause detachment of microtubules from gliding surfaces. Detachment leads to loss of cargo or sparse surface density of microtubules, thus limiting the availability of external forces. Detachment should be minimized. In doing so, detailed observation on the process of detachment would be helpful. However, due to its limited spatial and temporal resolution, experimental investigations are hampered. Here, we show a simulation study for the detachment of microtubules gliding over surfaces coated with kinesin motors by an external force. Owing to the computer simulation’s high spatial and time resolution, two modes of detachment were found. Detailed processes of the two modes were revealed, which would be useful to diminish detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saper, G., Hess, H.: Synthetic systems powered by biological molecular motors. Chem. Rev. 120(1), 288–309 (2020). https://doi.org/10.1021/acs.chemrev.9b00249

    Article  CAS  PubMed  Google Scholar 

  2. Lin, C.T., Kao, M.T., Kurabayashi, K., Meyhofer, E.: Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano. Lett. 8(4), 1041–1046 (2008). https://doi.org/10.1021/nl072742x

    Article  CAS  PubMed  Google Scholar 

  3. Fischer, T., Agarwal, A., Hess, H.: A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4(3), 162–166 (2009). https://doi.org/10.1038/nnano.2008.393

    Article  CAS  PubMed  Google Scholar 

  4. Lard, M., et al.: Ultrafast molecular motor driven nanoseparation and biosensing. Biosens. Bioelectron. 48, 145–152 (2013). https://doi.org/10.1016/j.bios.2013.03.071

    Article  CAS  PubMed  Google Scholar 

  5. Nakano, T., Moore, M.J., Wei, F., Vasilakos, A.V., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobioscience 11(2), 135–148 (2012). https://doi.org/10.1109/TNB.2012.2191570

    Article  PubMed  Google Scholar 

  6. Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.B., Guo, W.: A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutorials 18(3), 1887–1919 (2016). https://doi.org/10.1109/COMST.2016.2527741

    Article  Google Scholar 

  7. Van Den Heuvel, M.G.L., De Graaff, M.P., Dekker, C.: Molecular sorting by electrical steering of microtubules in kinesin-coated channels. Science 312(5775), 910–914 (2006). https://doi.org/10.1126/science.1124258

    Article  CAS  PubMed  Google Scholar 

  8. Agayan, R.R., et al.: Optimization of isopolar microtubule arrays. Langmuir 29(7), 2265–2272 (2013). https://doi.org/10.1021/la303792v

    Article  CAS  PubMed  Google Scholar 

  9. Isozaki, N., Shintaku, H.,Kotera, H., Hawkins, T.L., Ross, J. L., Yokokawa, R.: M I C R O R O B O T S Control of molecular shuttles by designing electrical and mechanical properties of microtubules. [Online]. Available http://robotics.sciencemag.org/ (2017)

  10. Bassir Kazeruni, N.M., Rodriguez, J.B., Saper, G., Hess, H.: Microtubule detachment in gliding motility assays limits the performance of kinesin-driven molecular shuttless. Langmuir. 36(27), 7901–7907 (2020). https://doi.org/10.1021/acs.langmuir.0c01002

    Article  CAS  PubMed  Google Scholar 

  11. Nitta, T., Tanahashi, A., Hirano, M., Hess, H.: Simulating molecular shuttle movements: Towards computer-aided design of nanoscale transport systems. Lab. Chip. 6(7), 881 (2006). https://doi.org/10.1039/b601754a

    Article  CAS  PubMed  Google Scholar 

  12. Nitta, T., Tanahashi, A., Hirano, M.: In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors. Lab. Chip. 10(11), 1447 (2010). https://doi.org/10.1039/b926210e

    Article  CAS  PubMed  Google Scholar 

  13. Ishigure, Y., Nitta, T.: Understanding the Guiding of Kinesin/Microtubule-Based Microtransporters in Microfabricated Tracks. Langmuir 30(40), 12089–12096 (2014). https://doi.org/10.1021/la5021884

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to May Sweet or Takahiro Nitta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sweet, M., Nitta, T. (2021). Detachment of Microtubules Driven by Kinesin Motors from Track Surfaces Under External Force. In: Nakano, T. (eds) Bio-Inspired Information and Communications Technologies. BICT 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-030-92163-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92163-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92162-0

  • Online ISBN: 978-3-030-92163-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics