Skip to main content

A Mathematical Model Predicting Gliding Speed of Actin Molecular Shuttles Over Myosin Motors in the Presence of Defective Motors

  • Conference paper
  • First Online:
Bio-Inspired Information and Communications Technologies (BICT 2021)

Abstract

Motor proteins are molecular machines that operate in living cells. These motor proteins have been used in vitro for applications such as nano- and microscale devices as transport systems in biosensors, biocomputing, and molecular communication. By introducing motor proteins into these devices, motor proteins become defective due to unfavorable binding to device surfaces, causing a decrease in transport speed or malfunctioning of transport. However, systematic experimental investigations of the effects of defective motors are hampered by difficulties in controlling the number of defective motors on surfaces. Here, we show a systematic study on the effects of defective motors on the motility of transport by using a mathematical model. The model predicted that motility is independent of the length of the associated filaments and depends on the ratio of the active motors. The model revealed that the ratio of active motors of more than 80% is required for sustainable motility. This insight would be useful in choosing appropriate materials for devices integrated with motor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saper, G., Hess, H.: Synthetic systems powered by biological molecular motors. Chem. Rev. 120(1), 288–309 (2020)

    Article  CAS  Google Scholar 

  2. Lin, C.T., Kao, M.T., Kurabayashi, K., Meyhofer, E.: Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett. 8(4), 1041–1046 (2008)

    Article  CAS  Google Scholar 

  3. Fischer, T., Agarwal, A., Hess, H.: A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4(3), 162–166 (2009)

    Article  CAS  Google Scholar 

  4. Lard, M., et al.: Ultrafast molecular motor driven nanoseparation and biosensing. Biosens. Bioelectron. 48, 145–152 (2013)

    Article  CAS  Google Scholar 

  5. Nicolau, D.V., et al.: Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proc. Natl. Acad. Sci. USA 113(10), 2591–2596 (2016)

    Article  CAS  Google Scholar 

  6. Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.-B., Guo, W.: A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutorials 18(3), 1887–1919 (2014)

    Article  Google Scholar 

  7. Nakano, T., Moore, M.J., Wei, F., Vasilakos, A.V., Shuai, J.: Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11(2), 135–148 (2012)

    Article  Google Scholar 

  8. Bourdieu, L., Duke, T., Elowitz, M.B., Winkelmann, D.A., Leibler, S., Libchaber, A.: Spiral defects in motility assays: a measure of motor protein force. Phys. Rev. Lett. 75(1), 176–179 (1995)

    Article  CAS  Google Scholar 

  9. Nitta, T., et al.: Comparing guiding track requirements for myosin- and kinesin-powered molecular shuttles. Nano Lett. 8(8), 2305–2309 (2008)

    Article  CAS  Google Scholar 

  10. Rahman, M.A., Salhotra, A., Månsson, A.: Comparative analysis of widely used methods to remove nonfunctional myosin heads for the in vitro motility assay. J. Muscle Res. Cell Motil. 39(5–6), 175–187 (2019)

    Article  Google Scholar 

  11. Hanson, K.L., et al.: Polymer surface properties control the function of heavy meromyosin in dynamic nanodevices. Biosens. Bioelectron. 93, 305–314 (2017)

    Article  CAS  Google Scholar 

  12. Greenberg, M.J., Moore, J.R.: The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67(5), 273–285 (2010)

    Article  CAS  Google Scholar 

  13. Kishino, A., Yanagida, T.: Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334(6177), 74–76 (1988)

    Article  CAS  Google Scholar 

  14. Riveline, D., et al.: Acting on actin: The electric motility assay. Eur. Biophys. J. 27(4), 403–408 (1998)

    Article  CAS  Google Scholar 

  15. Nishizaka, T., Miyata, H., Yoshikawa, H., Ishiwata, S., Kinosita, K.: Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377(6546), 251–254 (1995)

    Article  CAS  Google Scholar 

  16. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. London Ser. B Biol. Sci. 126(843), 136–195 (1938)

    Google Scholar 

  17. Ishigure, Y., Nitta, T.: Simulating an actomyosin in vitro motility assay: toward the rational design of actomyosin-based microtransporters. IEEE Trans. Nanobiosci. 14(6), 641–648 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Macharia Kang’iri or Takahiro Nitta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang’iri, S.M., Nitta, T. (2021). A Mathematical Model Predicting Gliding Speed of Actin Molecular Shuttles Over Myosin Motors in the Presence of Defective Motors. In: Nakano, T. (eds) Bio-Inspired Information and Communications Technologies. BICT 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-030-92163-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92163-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92162-0

  • Online ISBN: 978-3-030-92163-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics