Skip to main content

Experiments on Pause and Go State Estimation and Control with Uncertain Sensors Feedback

  • Conference paper
  • First Online:
Bio-Inspired Information and Communications Technologies (BICT 2021)

Abstract

A bio-inspired state estimation and control algorithm is experimentally tested to autonomously balance a team of robots on a circle. In this control scheme inspired from the social behavior of some insects species, a leader is elected randomly and periodically moves at a constant angular speed. The followers triggered by the leader motion, implement a decentralized and non-cooperative state estimation and control algorithm using uncertain and noisy proximity sensor measurements. Individuals in the team are immobile during the pause sequence to gather and process proximity distances, identify closer neighbors, and estimate their relative phase distances. During the go sequence, they either accelerate to achieve the desired spacing from closer neighbors, or move at a constant angular speed in phase with the leader. The scheme is tested on caster wheeled robots equipped with a rotating sonar platform to get forward and backward distances and is shown capable to balance the team of robots even in the presence of false readings or intermittent measurements. Further, at steady-state, the team of robots is capable to self balance in the absence of sensor feedback.

Supported by the United States Naval Academy and by the program “STAR 2018” of the University of Naples Federico II and Compagnia di San Paolo, Istituto Banco di Napoli - Fondazione, project ACROSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathrm {rem}(z)\) denotes the unique solution for r to the equation \(z=2\pi w +r\), where \(-\pi \le r<\pi \), \(w\in \mathbb {Z}\).

  2. 2.

    We say that robot i is ahead of j at time k if \(\xi _{ij}(k)>0\), otherwise i is behind j.

  3. 3.

    For simplicity, given the pause-and-go implementation, the measured distance and related quantities will be only defined at time instants kp, with k being an integer.

  4. 4.

    The notation |kp indicates that agent i has used all information collected until kp.

  5. 5.

    Note that \(\varphi _{\max }=4.2\times 10^{-2}\) rad since \(\delta _{\max }=0.02\) m. The relationship between \(\varphi _{\max }\) and \(\delta _{\max }\) is given below Eq. (5).

References

  1. Ahmed, N., Cortes, J., Martinez, S.: Distributed control and estimation of robotic vehicle networks: overview of the special issue. IEEE Control Syst. Mag. 36(2), 36–40 (2016)

    Article  Google Scholar 

  2. Ariel, G., Ophir, Y., Levi, S., Ben-Jacob, E., Ayali, A.: Individual pause-and-go motion is instrumental to the formation and maintenance of swarms of marching locust nymphs. PLoS ONE 9(7), e101636 (2014)

    Article  Google Scholar 

  3. Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)

    Article  Google Scholar 

  4. Bopardikar, S.D., Englot, B., Speranzon, A.: Robust belief roadmap: planning under uncertain and intermittent sensing. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6122–6129. IEEE (2014)

    Google Scholar 

  5. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robot. Autom. 12(6), 869–880 (1996)

    Article  Google Scholar 

  6. Briñón-Arranz, L., Schenato, L., Seuret, A.: Distributed source seeking via a circular formation of agents under communication constraints. IEEE Trans. Control Netw. Syst. 3(2), 104–115 (2015)

    Article  Google Scholar 

  7. Chen, J., Sun, D.: Resource constrained multirobot task allocation based on leader-follower coalition methodology. Int. J. Robot. Res. 30(12), 1423–1434 (2011)

    Article  Google Scholar 

  8. Chen, Y.Q., Wang, Z.: Formation control: a review and a new consideration. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3181–3186. IEEE (2005)

    Google Scholar 

  9. Cho, B.S., Moon, W., Seo, W.J., Baek, K.R.: A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding. J. Mech. Sci. Technol. 25(11), 2907–2917 (2011). https://doi.org/10.1007/s12206-011-0805-1

    Article  Google Scholar 

  10. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

    Article  CAS  Google Scholar 

  11. D’Amico, S., Montenbruck, O.: Differential GPS: an enabling technology for formation flying satellites. In: Sandau, R., Roeser, H.P., Valenzuela, A. (eds.) Small Satellite Missions for Earth Observation, pp. 457–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03501-2_43

    Chapter  Google Scholar 

  12. DeLellis, P., Garofalo, F., Iudice, F.L., Mancini, G.: Balancing cyclic pursuit using proximity sensors with limited range. IFAC Proc. Vol. 47(3), 5784–5789 (2014)

    Article  Google Scholar 

  13. DeLellis, P., Garofalo, F., Iudice, F.L., Mancini, G.: State estimation of heterogeneous oscillators by means of proximity measurements. Automatica 51, 378–384 (2015)

    Article  Google Scholar 

  14. DeLellis, P., Garofalo, F., Lo Iudice, F., Mancini, G.: Decentralised coordination of a multi-agent system based on intermittent data. Int. J. Control 88(8), 1523–1532 (2015)

    Article  Google Scholar 

  15. Dou, L., Song, C., Wang, X., Liu, L., Feng, G.: Coverage control for heterogeneous mobile sensor networks subject to measurement errors. IEEE Trans. Autom. Control 63(10), 3479–3486 (2018)

    Article  Google Scholar 

  16. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  17. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency constraints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009). https://doi.org/10.1007/s10472-010-9193-y

    Article  Google Scholar 

  18. Erdelj, M., Król, M., Natalizio, E.: Wireless sensor networks and multi-UAV systems for natural disaster management. Comput. Netw. 124, 72–86 (2017)

    Article  Google Scholar 

  19. Jetto, L., Longhi, S., Venturini, G.: Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots. IEEE Trans. Robot. Autom. 15(2), 219–229 (1999)

    Article  Google Scholar 

  20. Le Bars, F., Sliwka, J., Jaulin, L., Reynet, O.: Set-membership state estimation with fleeting data. Automatica 48(2), 381–387 (2012)

    Article  Google Scholar 

  21. Lo Iudice, F., Acosta, J.A., Garofalo, F., DeLellis, P.: Estimation and control of oscillators through short-range noisy proximity measurements. Automatica 113, 108752-1–108752-8 (2020)

    Google Scholar 

  22. Luo, R.C., Yih, C.C., Su, K.L.: Multisensor fusion and integration: approaches, applications, and future research directions. IEEE Sens. J. 2(2), 107–119 (2002)

    Article  Google Scholar 

  23. Mariottini, G.L., Morbidi, F., Prattichizzo, D., Pappas, G.J., Daniilidis, K.: Leader-follower formations: uncalibrated vision-based localization and control. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation, pp. 2403–2408. IEEE (2007)

    Google Scholar 

  24. Mwaffo, V., Curry, J.S., Iudice, F.L., De Lellis, P.: Pause-and-go self-balancing formation control of autonomous vehicles using vision and ultrasound sensors. IEEE Trans. Control Syst. Technol. 29(6), 2299–2311 (2021)

    Article  Google Scholar 

  25. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  Google Scholar 

  26. Stroupe, A.W., Martin, M.C., Balch, T.: Distributed sensor fusion for object position estimation by multi-robot systems. In: Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 2, pp. 1092–1098. IEEE (2001)

    Google Scholar 

  27. Zabala, F., Polidoro, P., Robie, A., Branson, K., Perona, P., Dickinson, M.H.: A simple strategy for detecting moving objects during locomotion revealed by animal-robot interactions. Curr. Biol. 22(14), 1344–1350 (2012)

    Article  CAS  Google Scholar 

  28. Zhang, Q., Lapierre, L., Xiang, X.: Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles. IEEE Trans. Ind. Inf. 9(1), 472–484 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Samuel Coyle and Kevin Lee for contributing during the Summer Program for Undergraduate Research (CU SPUR 2018) in preliminary works to design and fabricate the robotic platform.

Author information

Authors and Affiliations

Authors

Contributions

V.M., P.D., and F.L.I. designed the study, J.S.C. conducted the experiments on ground robots, V.M., P.D., F.L.I., and J.S.C. performed the analysis, V.M., and P.D. wrote the manuscript, with contributions from all authors.

Corresponding author

Correspondence to Violet Mwaffo .

Editor information

Editors and Affiliations

6 Appendix

6 Appendix

Table 2. Proximity distances in radiant (rad) measured frontward and backward by the ultrasonic sensor in an exemplary trial. Note that in case of no measurement or no object detected within the sensing range, the estimated proximity distance is set to “n.a.” as in (3). False readings are inside a box.
figure b
figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mwaffo, V., Curry, J.S., Lo Iudice, F., DeLellis, P. (2021). Experiments on Pause and Go State Estimation and Control with Uncertain Sensors Feedback. In: Nakano, T. (eds) Bio-Inspired Information and Communications Technologies. BICT 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-030-92163-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92163-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92162-0

  • Online ISBN: 978-3-030-92163-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics