Skip to main content

Sex Differences in User Experience in a VR EEG Neurofeedback Paradigm

  • Conference paper
  • First Online:
Games and Learning Alliance (GALA 2021)

Abstract

In brain-computer interface applications such as neurofeedback (NF), traditional 2D visual feedback has been replaced frequently by more sophisticated 3D virtual reality (VR) scenarios. VR is considered to be more motivating and to increase NF training success. However, hard evidence on user experience in set-ups combining VR-EEG NF has been scarcely reported. Hence, we evaluated user experience on cybersickness, discomfort/pain, technology acceptance and motivational factors and compared them between a 3D and a 2D VR scenario. Additionally, we focused on possible sex differences. 68 subjects received one VR-neurofeedback session with either a 3D or 2D VR paradigm. Statistical analyses showed that sickness was higher after the VR-NF training than before, and women experienced higher sickness values than men. Further, women reported more subjective pressure sensations on the head, eye burning and headache, as well as higher technology anxiety, less perceived usefulness of the used technology and less perceived technology accessibility. No dimensionality or sex differences regarding subjective feeling of flow and presence were found. Moreover, no differences between the 3D and 2D VR scenarios were observed. Our results indicate sex differences in user experience in VR-based NF paradigms, which should be considered when using VR as feedback modality in future NF applications. In contrast, 3D or 2D presentation of the VR scenario did not affect user experience, indicating that more immersive 3D VR scenarios do not cause more negative side effects than the less immersive 2D VR scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pesudovs, K.: The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom. Vision Sci. 82(7), 571 (2005). https://doi.org/10.1097/01.opx.0000171186.02468.b7

    Article  Google Scholar 

  2. Brooks, J.O., et al.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010). https://doi.org/10.1016/j.aap.2009.04.013

    Article  Google Scholar 

  3. Cai, Z., Fan, X., Du, J.: Gender and attitudes toward technology use: a meta-analysis. Comput. Educ. 105, 1–13 (2017). https://doi.org/10.1016/j.compedu.2016.11.003

    Article  Google Scholar 

  4. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Blackmore, K., Nesbitt, K., Smith, S.P. (eds.) Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9. ACM, New York, NY, USA (2014)

    Google Scholar 

  5. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35, 982–1003 (1989)

    Article  Google Scholar 

  6. Gruzelier, J., Inoue, A., Smart, R., Steed, A., Steffert, T.: Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480(2), 112–116 (2010). https://doi.org/10.1016/j.neulet.2010.06.019

    Article  Google Scholar 

  7. Juliano, J., et al.: Embodiment is related to better performance on a brain–computer interface in immersive virtual reality: a pilot study. Sensors 20(4), 1204 (2020). https://doi.org/10.3390/s20041204

    Article  Google Scholar 

  8. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  9. Kleih, S.C., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain-computer interface use. Clin. Neurophysiol. 121(7), 1023–1031 (2010). https://doi.org/10.1016/j.clinph.2010.01.034

    Article  Google Scholar 

  10. Kober, S.E., Kurzmann, J., Neuper, C.: Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. Int. J. Psychophysiol. 83(3), 365–374 (2012). https://doi.org/10.1016/j.ijpsycho.2011.12.003

    Article  Google Scholar 

  11. Kober, S.E., Reichert, J.L., Schweiger, D., Neuper, C., Wood, G.: Effects of a 3D Virtual Reality Neurofeedback Scenario on User Experience and Performance in Stroke Patients. In: Bottino, R., Jeuring, J., Veltkamp, R.C. (eds.) GALA 2016. LNCS, vol. 10056, pp. 83–94. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50182-6_8

    Chapter  Google Scholar 

  12. Kober, S.E., Reichert, J.L., Schweiger, D., Neuper, C., Wood, G.: Does feedback design matter? A neurofeedback study comparing immersive virtual reality and traditional training screens in elderly. IJSG 4(3) (2017). doi:https://doi.org/10.17083/ijsg.v4i3.167

  13. Kolasinski, E.M.: Simulator Sickness in Virtual Environments, Bd 1995. Alexandria, VA (1995)

    Google Scholar 

  14. Kothgassner, O.D., Felnhofer, A., Hauk, N., Kastenhofer, E., Gomm, J., Kryspin-Exner, I.: TUI – Technology Usage Inventory. Manual (2013)

    Google Scholar 

  15. Marzbani, H., Marateb, H.R., Mansourian, M.: Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7(2), 143–158 (2016). https://doi.org/10.15412/J.BCN.03070208

    Article  Google Scholar 

  16. Oh, S.Y., Bailenson, J.: Virtual and augmented reality. In: Rössler, P., Hoffner, C.A., van Zoonen, L. (eds.) The International Encyclopedia of Media Effects, pp. 1–16. John Wiley & Sons Inc, Chichester, West Sussex, Malden, MA (2017)

    Google Scholar 

  17. de Barros, P., França, F.: Follow-up to case study: neurofeedback as a first choice treatment in an adhd and comorbidities. KLS (2018). https://doi.org/10.18502/kls.v4i8.3285

    Article  Google Scholar 

  18. Paillard, A.C., et al.: Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J. Vestibular Res. 23(4–5), 203–209 (2013). https://doi.org/10.3233/VES-130501

    Article  Google Scholar 

  19. Regenbrecht, H.T., Schubert, T.W., Friedmann, F.: Measuring the sense of presence and its relations to fear of heights in virtual environments. Int. J. Hum. Comput. Interact. 10(3), 233–249 (1998). https://doi.org/10.1207/s15327590ijhc1003_2

    Article  Google Scholar 

  20. Rheinberg, F., Vollmeyer, R., Engeser, S.: FKS – Flow-Kurzskala. ZPID (Leibniz Institute for Psychology Information) – Testarchiv (2019)

    Google Scholar 

  21. Rheinberg, F., Vollmeyer, R., Burns, B.D.: FAM – Fragebogen zur aktuellen Motivation. ZPID (Leibniz Institute for Psychology) – Open Test Archive (2021)

    Google Scholar 

  22. Salisbury, D.B., Dahdah, M., Driver, S., Parsons, T.D., Richter, K.M.: Virtual reality and brain computer interface in neurorehabilitation. Baylor Univ. Med. Center Proc. 29(2), 124–127 (2016)

    Article  Google Scholar 

  23. Schabus, M., et al.: Enhancing sleep quality and memory in insomnia using instrumental sensorimotor rhythm conditioning. Biol. Psychol. 95, 126–134 (2014). https://doi.org/10.1016/j.biopsycho.2013.02.020

    Article  Google Scholar 

  24. Schmidt, M., Kafka, J.X., Kothgassner, O.D., Hlavacs, H., Beutl, L., Felnhofer, A.: Why does it always rain on me? Influence of gender and environmental factors on usability, technology related anxiety and immersion in virtual environments. In: Reidsma, D., Katayose, H., Nijholt, A. (eds.) ACE 2013. LNCS, vol. 8253, pp. 392–402. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03161-3_29

    Chapter  Google Scholar 

  25. Shafer, D., Korpi, M., Carbonara, C.P.: Modern Virtual reality technology: cybersickness, sense of presence, and gender. Media Psychol. Rev. 11, 1–13 (2017)

    Google Scholar 

  26. Sharples, S., Cobb, S., Moody, A., Wilson, J.R.: Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems. Displays 29(2), 58–69 (2008). https://doi.org/10.1016/j.displa.2007.09.005

    Article  Google Scholar 

  27. Stanney, K., Fidopiastis, C., Foster, L.: Virtual Reality is sexist: but it does not have to be. Front. Rob. AI 7, 4 (2020). https://doi.org/10.3389/frobt.2020.00004

    Article  Google Scholar 

  28. Tatum, W.O., Dworetzky, B.A., Schomer, D.L.: Artifact and recording concepts in EEG. J. Clin. Neurophysiol. 28(3), 252–263 (2011). https://doi.org/10.1097/WNP.0b013e31821c3c93

    Article  Google Scholar 

  29. Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M.A., Strehl, U., Loo, S.K.: Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry 28(3), 293–305 (2018). https://doi.org/10.1007/s00787-018-1121-4

    Article  Google Scholar 

  30. Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 10, 158 (2019). https://doi.org/10.3389/fpsyg.2019.00158

    Article  Google Scholar 

  31. Williams, J.M., Thirer, J.: Vertical and horizontal peripheral vision in male and female athletes and nonathletes. Res. Quarterly Am. Alliance Health Phys. Educ. Recreation 46(2), 200–205 (1975). https://doi.org/10.1080/10671315.1975.10615324

    Article  Google Scholar 

  32. Witte, M., Kober, S.E., Ninaus, M., Neuper, C., Wood, G.: Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 7, 478 (2013). https://doi.org/10.3389/fnhum.2013.00478

    Article  Google Scholar 

  33. Xiang, M.-Q., Hou, X.-H., Liao, B.-G., Liao, J.-W., Hu, M.: The effect of neurofeedback training for sport performance in athletes: a meta-analysis. Psychol. Sport Exercise 36, 114–122 (2018). https://doi.org/10.1016/j.psychsport.2018.02.004

    Article  Google Scholar 

  34. Young, S.D., Adelstein, B.D., Ellis, S.R.: Demand characteristics in assessing motion sickness in a virtual environment: or does taking a motion sickness questionnaire make you sick? IEEE Trans. Visualization Comput. Graphics 13(3), 422–428 (2007). https://doi.org/10.1109/TVCG.2007.1029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, L.M., Wood, G., Neuper, C., Kober, S.E. (2021). Sex Differences in User Experience in a VR EEG Neurofeedback Paradigm. In: de Rosa, F., Marfisi Schottman, I., Baalsrud Hauge, J., Bellotti, F., Dondio, P., Romero, M. (eds) Games and Learning Alliance. GALA 2021. Lecture Notes in Computer Science(), vol 13134. Springer, Cham. https://doi.org/10.1007/978-3-030-92182-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92182-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92181-1

  • Online ISBN: 978-3-030-92182-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics