Skip to main content

Multi Modal Normalization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

  • 3015 Accesses

Abstract

In this paper, we propose a novel normalization framework, multi-modal normalization(MultiNorm) that learns the multiple modalities through affine transformations involved in the normalization architecture. We have shown its effectiveness in speech-driven facial video generation and video emotion detection which are complex problems due to its multi-modal aspects in audio and video domain.

The multi-modal normalization uses various features such as mel spectrogram, pitch, energy from audio signals and predicted keypoint heatmap/ optical flow and a single image to learn the respective affine parameters to generate highly expressive video. The incorporation of multimodal normalization has given superior performances in the proposed video synthesis from an audio and a single image against previous methods on various metrics such as SSIM (structural similarity index), PSNR (peak signal to noise ratio), CPBD (image sharpness), WER (word error rate), blinks/sec and LMD (landmark distance). In video emotion detection, we have leveraged the mel-spectrogram and optical flow in the multi modal normalization to learn the affine parameters that helps in improving the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/raymon-tian/hourglass-facekeypoints-detection.

  2. 2.

    https://github.com/raymon-tian/hourglass-facekeypoints-detection.

  3. 3.

    https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder.

  4. 4.

    https://sites.google.com/view/iconip2021.

References

  1. Assael, Y.M., Shillingford, B., Whiteson, S., de Freitas, N.: Lipnet: end-to-end sentence-level lipreading. In: GPU Technology Conference (2017)

    Google Scholar 

  2. Ba, J., Kiros, J., Hinton, G.: Layer normalization (2016)

    Google Scholar 

  3. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In: International Conference on Computer Vision (2017)

    Google Scholar 

  4. Cao, H., Cooper, D., Keutmann, M., Gur, R., Nenkova, A., Verma, R.: Crema-d: Crowd-sourced emotional multimodal actors dataset. IEEE Trans. affective Comput. 5, 377–390 (2014). https://doi.org/10.1109/TAFFC.2014.2336244

  5. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. In: arXiv preprint arXiv:1812.08008 (2018)

  6. Chen, L., Li, Z., Maddox, R.K., Duan, Z., Xu, C.: Lip movements generation at a glance (2018)

    Google Scholar 

  7. Chen, L., Maddox, R., Duan, Z., Xu, C.: Hierarchical cross-modal talking face generation with dynamic pixel-wise loss (2019)

    Google Scholar 

  8. Chung, J.S., Nagrani, A., Zisserman, A.: Voxceleb2: Deep speaker recognition. In: INTERSPEECH (2018)

    Google Scholar 

  9. Chung, J.S., Jamaludin, A., Zisserman, A.: You said that? In: British Machine Vision Conference (2017)

    Google Scholar 

  10. Cooke, M., Barker, J., Cunningham, S., Shao, X.: Grid AV speech corpus sample (2013)

    Google Scholar 

  11. Das, D., Biswas, S., Sinha, S., Bhowmick, B.: Speech-driven facial animation using cascaded GANs for learning of motion and texture. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 408–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_25

    Chapter  Google Scholar 

  12. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, New York (2016). http://www.deeplearningbook.org

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp.1510–1519 (2017). https://doi.org/10.1109/ICCV.2017.167

  15. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  16. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2019)

    Google Scholar 

  17. Kim, J., Kim, M., Kang, H.W., Lee, K.: U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation (2019)

    Google Scholar 

  18. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International Conference on Learning Representations (2014)

    Google Scholar 

  19. Kumar, N., Goel, S., Narang, A., Hasan, M.: Robust one shot audio to video generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)

    Google Scholar 

  20. Liu, D., Vu, M.T., Chatterjee, S., Rasmussen, L.: Neural network based explicit mixture models and expectation-maximization based learning. In: 2020 International Joint Conference on Neural Networks (IJCNN) pp. 1–10 (2020)

    Google Scholar 

  21. Liu, G., Shih, K.J., Wang, T.C., Reda, F.A., Sapra, K., Yu, Z., Tao, A., Catanzaro, B.: Partial convolution based padding. arXiv preprint arXiv:1811.11718 (2018)

  22. Mallya, A., Wang, T.C., Sapra, K., Liu, M.Y.: World-consistent video-to-video synthesis (2020)

    Google Scholar 

  23. Alghamdi, N., Maddock, S., Marxer, R., Barker, J., Brown, G.J..: A corpus of audio-visual lombard speech with frontal and profile view. The Journal of the Acoustical Society of America 143, EL523–EL529 (2018). https://doi.org/10.1121/1.5042758

  24. Nam, H., Kim, H.E.: Batch-instance normalization for adaptively style-invariant neural networks (05 2018)

    Google Scholar 

  25. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  26. Pfülb, B., Gepperth, A.: Overcoming catastrophic forgetting with gaussian mixture replay. ArXiv abs/2104.09220 (2021)

    Google Scholar 

  27. Richardson, E., Weiss, Y.: On GANs and GMMs. In: NeurIPS (2018)

    Google Scholar 

  28. Soukupova, T., Cech, J.: Real-time eye blink detection using facial landmarks (2016)

    Google Scholar 

  29. Storey, G., Bouridane, A., Jiang, R., Li, C.-T.: Atypical facial landmark localisation with stacked hourglass networks: a study on 3D facial modelling for medical diagnosis. In: Jiang, R., Li, C.-T., Crookes, D., Meng, W., Rosenberger, C. (eds.) Deep Biometrics. USL, pp. 37–49. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32583-1_3

    Chapter  Google Scholar 

  30. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: Decomposing motion and content for video generation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1526–1535 (2018)

    Google Scholar 

  31. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization (2016)

    Google Scholar 

  32. Vougioukas, K., Petridi, S., Pantic, M.: End-to-end speech-driven facial animation with temporal GANs. J. Foo 14(1), 234–778 (2004)

    Google Scholar 

  33. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient channel attention for deep convolutional neural networks (2019)

    Google Scholar 

  34. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  35. Wiles, O., Koepke, A., Zisserman, A.: X2face: A network for controlling face generation by using images, audio, and pose codes. In: European Conference on Computer Vision (2018)

    Google Scholar 

  36. Zhou, B., Khosla, A., A., L., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  37. Zhu, H., Huang, H., Li, Y., Zheng, A., He, R.: Arbitrary talking face generation via attentional audio-visual coherence learning. arXiv: Computer Vision and Pattern Recognition (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, N., Narang, A., lall, B., Goel, S. (2021). Multi Modal Normalization. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics