Abstract
Convolutional neural networks (CNNs) have achieved great success in computer vision. In general, CNNs can achieve superior performance depend on the deep network structure. However, when the network layers are fewer, the ability of CNNs is hugely degraded. Moreover, deep neural networks often with great memory and calculations burdens, which are not suitable for practical applications. In this paper, we propose Local Feature Normalization (LFN) to enhance the local competition of features, which can effectively improve the shallow CNNs. LFN can highlight the expressive local regions while repressing the unobvious local areas. We further compose LFN with Batch Normalization (BN) to construct an LFBN by two ways of concatenating and adding. LFN and BN are excel at handle local features and global features, respectively. Therefore LFBN can significantly improve the shallow CNNs. We also construct a shallow LFBN-Net by stacking the LFBN and conduct extensive experiments to validate it. LFBN-Net has achieved superior ability with fewer layers on various benchmark datasets. And we also insert the LFBN to exiting CNNs. These CNNs with the LFBN all achieve considerable performance improvement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25
Chen, H., et al.: AdderNet: do we really need multiplications in deep learning? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1468–1477 (2020)
Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings (2011)
Darlow, L.N., Crowley, E.J., Antoniou, A., Storkey, A.J.: CINIC-10 is not ImageNet or CIFAR-10. arXiv preprint arXiv:1810.03505 (2018)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: Mmaking VGG-style convnets great again. arXiv preprint arXiv:2101.03697 (2021)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Comput. Sci. 14(7), 38–39 (2015)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural Information Processing Systems, pp. 598–605 (1990)
Li, B., Wu, F., Weinberger, K.Q., Belongie, S.: Positional normalization. arXiv preprint arXiv:1907.04312 (2019)
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Luo, P., Ren, J., Peng, Z., Zhang, R., Li, J.: Differentiable learning-to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779 (2018)
Lyu, S., Simoncelli, E.P.: Nonlinear image representation using divisive normalization. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)
Odena, A.: Semi-supervised learning with generative adversarial networks. arXiv preprint arXiv:1606.01583 (2016)
Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-Net. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 464–479 (2018)
Peng, B., et al.: Correlation congruence for knowledge distillation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5007–5016 (2019)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)
Singh, S., Krishnan, S.: Filter response normalization layer: eliminating batch dependence in the training of deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11237–11246 (2020)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Tang, J., Liu, M., Jiang, N., Yu, W., Yang, C.: Spatial and channel dimensions attention feature transfer for better convolutional neural networks. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Xu, S., Ren, X., Ma, S., Wang, H.: meProp: sparsified back propagation for accelerated deep learning with reduced overfitting. In: ICML 2017 (2017)
Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Acknowledgement
This work was supported in part by the Sichuan Science and Technology Program under Grant 2020YFS0307, Mianyang Science and Technology Program 2020YFZJ016, SWUST Doctoral Foundation under Grant 19zx7102, 21zx7114.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, N., Tang, J., Yang, X., Yu, W., Zhang, P. (2021). Improving Shallow Neural Networks via Local and Global Normalization. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_49
Download citation
DOI: https://doi.org/10.1007/978-3-030-92185-9_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92184-2
Online ISBN: 978-3-030-92185-9
eBook Packages: Computer ScienceComputer Science (R0)