Skip to main content

Genetic Algorithm and Distinctiveness Pruning in the Shallow Networks for VehicleX

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

  • 2653 Accesses

Abstract

Building well-performing neural network models often require a large amount of real data. However, synthetic datasets are favoured as the collection of real data often brings up privacy and data security issues. This paper aims to build a shallow neural network model for the pre-trained synthetic feature dataset, VehicleX. Using genetic algorithm to reduce the dimensional complexity by randomly selecting a subset of features from before training. Furthermore, distinctiveness pruning techniques are used to reduce the network structure and attempt to find the optimal hidden neuron size. Both techniques improve the model performance in terms of test accuracy. The baseline model achieves 36.07% classification accuracy. Integrating genetic algorithm and the distinctiveness pruning achieve approximately 37.26% and 36.12% respectively while combining both methods achieve 37.31%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buhrmester, V., Münch, D., Arens, M.: Analysis of explainers of black box deep neural networks for computer vision: A survey. arXiv preprint arXiv:1911.12116 (2019)

  2. Chandakkar, P.S., Li, Y., Ding, P.L.K., Li, B.: Strategies for re-training a pruned neural network in an edge computing paradigm. In: 2017 IEEE International Conference on Edge Computing (EDGE), pp. 244–247. IEEE (2017)

    Google Scholar 

  3. El-Maaty, A.M.A., Wassal, A.G.: Hybrid GA-PCA feature selection approach for inertial human activity recognition. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1027–1032. IEEE (2018)

    Google Scholar 

  4. Gedeon, T.D.: Indicators of hidden neuron functionality: the weight matrix versus neuron behaviour. In: Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, pp. 26–29. IEEE (1995)

    Google Scholar 

  5. Gedeon, T.D., Harris, D.: Network reduction techniques. In: Proceedings International Conference on Neural Networks Methodologies and Applications, vol. 1, pp. 119–126 (1991)

    Google Scholar 

  6. Kakoulli, E., Soteriou, V., Theocharides, T.: Intelligent hotspot prediction for network-on-chip-based multicore systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(3), 418–431 (2012)

    Article  Google Scholar 

  7. Kim, E., Gopinath, D., Pasareanu, C., Seshia, S.A.: A programmatic and semantic approach to explaining and debugging neural network based object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11128–11137 (2020)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3d lidar using fully convolutional network. arXiv preprint arXiv:1608.07916 (2016)

  10. Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganiere, R., Rebut, J.: How much real data do we actually need: Analyzing object detection performance using synthetic and real data. arXiv preprint arXiv:1907.07061 (2019)

  11. Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks. Pattern Recogn. 40(1), 4–18 (2007)

    Article  Google Scholar 

  12. Rodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2009)

    Article  Google Scholar 

  13. Sehgal, S., Singh, H., Agarwal, M., Bhasker, V., et al.: Data analysis using principal component analysis. In: 2014 International Conference on Medical Imaging, M-Health and Emerging Communication Systems (MedCom), pp. 45–48. IEEE (2014)

    Google Scholar 

  14. Sharma, S., Sharma, S.: Activation functions in neural networks. Towards DataScience 6(12), 310–316 (2017)

    Google Scholar 

  15. Tang, Z., et al.: Pamtri: pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. In: Proceedings of the IEEE/CVF Inter-national Conference on Computer Vision, pp. 211–220 (2019)

    Google Scholar 

  16. Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T.: Simulating content consistent vehicle datasets with attribute descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 775–791. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_46

    Chapter  Google Scholar 

  17. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linwei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Fu, YS. (2021). Genetic Algorithm and Distinctiveness Pruning in the Shallow Networks for VehicleX. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics