Skip to main content

Stack Multiple Shallow Autoencoders into a Strong One: A New Reconstruction-Based Method to Detect Anomaly

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

  • 2703 Accesses

Abstract

Anomaly detection methods based on deep learning typically utilize reconstruction as a proxy task. These methods train a deep model to reconstruct the input from high-level features extracted from the samples. The underlying assumption of these methods is that a deep model trained on normal data would produce higher reconstruction error for abnormal input. But this underlying assumption is not always valid. Because the neural networks have a strong capacity to generalize, the deep model can also reconstruct the unseen abnormal input well sometimes, leading to a not prominent reconstruction error for abnormal input. Hence the decision-making process cannot distinguish the abnormal samples well. In this paper, we stack multiple shallow autoencoders (StackedAE) to enlarge the difference between reconstructions of normal and abnormal inputs. Our architecture feeds the output reconstruction of prior AE into the next one as input. For abnormal input, the iterative reconstruction process would gradually enlarge the reconstruction error. Our goal is to propose a general architecture that can be applied to different data types, e.g., video and image. For video data, we further introduce a weighted loss to emphasize the importance of the center frame and its near neighbors because it is unfair to treat all frames in a 3D convolution frame cuboid equally. To understand the effectiveness of our proposed method, we test on video datasets UCSD-Ped2, CUHK Avenue, and the image dataset MNIST. The results of the experiments demonstrate the effectiveness of our idea.

The research was partly supported by the National Natural Science Foundation of China (No. 61775139), Shanghai Science and Technology Innovation Action Plan (No. 20JC1416503), and Shanghai Key Research Laboratory of NSAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of deep networks. Adv. Neural. Inf. Process. Syst. 19, 153 (2007)

    Google Scholar 

  3. Chalapathy, R., Menon, A.K., Chawla, S.: Anomaly detection using one-class neural networks. arXiv preprint arXiv:1802.06360 (2018)

  4. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV, pp. 1705–1714 (2019)

    Google Scholar 

  5. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR, pp. 733–742 (2016)

    Google Scholar 

  6. Hinami, R., Mei, T., Satoh, S.: Joint detection and recounting of abnormal events by learning deep generic knowledge. In: ICCV (2017)

    Google Scholar 

  7. Kim, J., Grauman, K.: Observe locally, infer globally: a space-time MRF for detecting abnormal activities with incremental updates. In: CVPR, pp. 2921–2928. IEEE (2009)

    Google Scholar 

  8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  9. Li, C., Xu, Q., Peng, C., Guo, Y.: Anomaly detection based on the global-local anomaly score for trajectory data. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1143, pp. 275–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36802-9_30

    Chapter  Google Scholar 

  10. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: CVPR, pp. 6536–6545 (2018)

    Google Scholar 

  11. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: ICCV, pp. 341–349 (2017)

    Google Scholar 

  12. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981. IEEE (2010)

    Google Scholar 

  13. van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.: Conditional image generation with pixelcnn decoders. In: NeurIPS, pp. 4797–4805 (2016)

    Google Scholar 

  14. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  15. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: ICCV, pp. 14372–14381 (2020)

    Google Scholar 

  16. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  17. Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L., Regazzoni, C., Sebe, N.: Abnormal event detection in videos using generative adversarial nets. In: ICIP, pp. 1577–1581. IEEE (2017)

    Google Scholar 

  18. Ruff, L., et al.: Deep one-class classification. In: ICML, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  19. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C., et al.: Support vector method for novelty detection. In: NeurIPS (1999)

    Google Scholar 

  20. Tudor Ionescu, R., Smeureanu, S., Alexe, B., Popescu, M.: Unmasking the abnormal events in video. In: ICCV, pp. 2895–2903 (2017)

    Google Scholar 

  21. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553 (2015)

  22. Yan, B., Han, G.: Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system. IEEE Access 6, 41238–41248 (2018)

    Article  Google Scholar 

  23. Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: ICML, pp. 1100–1109. PMLR (2016)

    Google Scholar 

  24. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: ACM MM, pp. 1933–1941 (2017)

    Google Scholar 

  25. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. ASA Data Sci. J. 5(5), 363–387 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zong, B., et al.: Deep autoencoding gaussian mixture model for 3 unsupervised anomaly detection. In: ICLR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhua Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2021). Stack Multiple Shallow Autoencoders into a Strong One: A New Reconstruction-Based Method to Detect Anomaly. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics