Skip to main content

Towards Proactive Context-Aware IoT Environments by Means of Federated Learning

  • Conference paper
  • First Online:
ICWE 2021 Workshops (ICWE 2021)

Abstract

Internet of Things (IoT) integrates billions of smart devices and keeps growing. IoT technologies play a crucial role in smart applications that improve the quality of life. Likewise, the computational capacity of mobile devices has greatly increased, opening up new possibilities. In many cases, human interaction is necessary for IoT devices to perform properly. Users must configure more and more devices, investing time and effort. Artificial Intelligence (AI) techniques are currently used to predict user needs and behavior, trying to adapt devices to user preferences. However, achieving all-purpose models is a challenging task, aggravated by long training periods preventing personalized models in the early stages. This paper proposes a solution based on Federated Learning to predict behaviors in different environments and improve user’s coexistence with IoT devices, avoiding most manual interactions and making use of mobile devices capabilities. Federation allows new users’ predictions to be done using other users’ previous behaviors in similar environments. Also, it provides closer customization, immediate availability and avoids most manual device interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.tensorflow.org/.

  2. 2.

    https://deeplearning4j.org/.

References

  1. Alaa, M., Zaidan, A.A., Zaidan, B.B., Talal, M., Kiah, M.L.: A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017). https://doi.org/10.1016/j.jnca.2017.08.017

    Article  Google Scholar 

  2. Arasteh, H., et al.: IoT-based smart cities: a survey. In: IEEE-EEEIC 2016, pp. 1–6 (2016). https://doi.org/10.1109/EEEIC.2016.7555867

  3. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning with personalization layers (2019)

    Google Scholar 

  4. Cook, D.J., Youngblood, M., Das, S.K.: A multi-agent approach to controlling a smart environment. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes. LNCS (LNAI), vol. 4008, pp. 165–182. Springer, Heidelberg (2006). https://doi.org/10.1007/11788485_10

    Chapter  Google Scholar 

  5. Google Inc.: Measure app performance with Android Profiler, October 2020. https://developer.android.com/studio/profile/android-profiler

  6. Google Inc.: Profile battery usage with Batterystats and Battery Historian, January 2021. https://developer.android.com/topic/performance/power/setup-battery-historian

  7. Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models (2021)

    Google Scholar 

  8. Herrera, J.L., Bellavista, P., Foschini, L., Galán-Jiménez, J., Murillo, J.M., Berrocal, J.: Meeting stringent QoS requirements in IIoT-based scenarios. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE (2020)

    Google Scholar 

  9. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.B.: The non-IID data quagmire of decentralized machine learning. In: ICML (2020)

    Google Scholar 

  10. Kabir, M.H., Hoque, M.R., Yang, S.H.: Development of a smart home context-aware application: a machine learning based approach. Int. J. Smart Home 9, 217–226 (2015). https://doi.org/10.14257/ijsh.2015.9.1.23

    Article  Google Scholar 

  11. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S.J., Stich, S.U., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning (2020)

    Google Scholar 

  12. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg on non-IID data. In: ICLR (2020). https://openreview.net/forum?id=HJxNAnVtDS

  13. Lueth, K.L.: State of the IoT 2020: 12 billion IoT connections, November 2020. https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/

  14. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning (2020)

    Google Scholar 

  15. McMahan, H., Moore, E., Ramage, D., Agüera y Arcas, B.: Federated learning of deep networks using model averaging. ArXiv abs/1602.05629 (2016)

    Google Scholar 

  16. McMahan, H., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  17. Nascimento, N., Alencar, P., Lucena, C., Cowan, D.: A context-aware machine learning-based approach, October 2018

    Google Scholar 

  18. Nigam, N., Dutta, T., Gupta, H.P.: Impact of noisy labels in learning techniques: a survey. In: Kolhe, M.L., Tiwari, S., Trivedi, M.C., Mishra, K.K. (eds.) Advances in Data and Information Sciences. LNNS, vol. 94, pp. 403–411. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0694-9_38

    Chapter  Google Scholar 

  19. O’Dea, S.: Smartphone users 2020, December 2020. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

  20. Reinisch, C., Kofler, M.J., Kastner, W.: ThinkHome: a smart home as digital ecosystem. In: IEEE-DEST 2010, pp. 256–261 (2010)

    Google Scholar 

  21. Rojo, J., Flores-Martin, D., Garcia-Alonso, J., Murillo, J.M., Berrocal, J.: Automating the interactions among IoT devices using neural networks. In: 2020 IEEE PerCom Workshops, pp. 1–6 (2020). https://doi.org/10.1109/PerComWorkshops48775.2020.9156111

  22. Scully, P.: Top 10 IoT applications in 2020, July 2020. https://iot-analytics.com/top-10-iot-applications-in-2020/

  23. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Allerton (2015), pp. 909–910 (2015). https://doi.org/10.1109/ALLERTON.2015.7447103

  24. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Federated evaluation of on-device personalization (2019)

    Google Scholar 

  25. Wehmeyer, K.: Assessing users’ attachment to their mobile devices, p. 16, August 2007. https://doi.org/10.1109/ICMB.2007.19

  26. Yang, T., et al.: Applied federated learning: improving Google keyboard query suggestions (2018)

    Google Scholar 

  27. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data (2018)

    Google Scholar 

  28. Zhu, A.: Learning From Non-IID data (2020). https://xzhu0027.gitbook.io/blog/ml-system/sys-ml-index/learning-from-non-iid-data

Download references

Acknowledgement

This work was funded by the project RTI2018-094591-B-I00 and the FPU17/02251 grant (MCI /AEI/FEDER, UE), the 4IE+ Project (0499-4IE-PLUS-4-E) funded by the Interreg V-A España-Portugal (POCTEP) 2014–2020 program, by the Department of Economy, Science and Digital Agenda of the Government of Extremadura (GR18112, IB18030), and by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Rentero-Trejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rentero-Trejo, R., Flores-Martin, D., Galán-Jiménez, J., García-Alonso, J., Murillo, J.M., Berrocal, J. (2022). Towards Proactive Context-Aware IoT Environments by Means of Federated Learning. In: Bakaev, M., Ko, IY., Mrissa, M., Pautasso, C., Srivastava, A. (eds) ICWE 2021 Workshops. ICWE 2021. Communications in Computer and Information Science, vol 1508. Springer, Cham. https://doi.org/10.1007/978-3-030-92231-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92231-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92230-6

  • Online ISBN: 978-3-030-92231-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics