
EvoBA: An Evolution Strategy as a Strong Baseline
for Black-Box Adversarial Attacks
Catalin-Andrei Ilie ( cilie@fmi.unibuc.ro)

University of Bucharest
Marius Popescu

University of Bucharest
Alin Stefanescu

University of Bucharest

Research Article

Keywords:

Posted Date: November 23rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2294355/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2294355/v1
mailto:cilie@fmi.unibuc.ro
https://doi.org/10.21203/rs.3.rs-2294355/v1
https://creativecommons.org/licenses/by/4.0/

EvoBA: An Evolution Strategy as a Strong Baseline for

Black-Box Adversarial Attacks

Andrei Ilie ⋆, Marius Popescu, and Alin Stefanescu

University of Bucharest, Romania

{cilie, marius.popescu, alin}@fmi.unibuc.ro

Abstract. Recent work has shown how easily white-box adversarial attacks can

be applied to state-of-the-art image classifiers. However, real-life scenarios re-

semble more the black-box adversarial conditions, lacking transparency and usu-

ally imposing natural, hard constraints on the query budget.

It is usual for the black-box adversarial literature to assume that the attacker,

while constrained by the number of model invocations and total image perturba-

tion, has huge resources in terms of computation power and time. Therefore, most

black-box adversarial attacks take a long time to run and require heavy computa-

tional processes. This makes it unfeasible for day-to-day computer vision systems

developers to run continuous robustness checks against their models, by playing

the attacker role and seeing when and how their model fails.

Therefore, we propose a class of black-box attacks based on simple evolutionary

strategies: EvoBA, EvoBA-E, and EvoBA-ET. These are fast, query-efficient

attacks, aiming to minimize the L0 adversarial perturbations, and do not require

any form of training.

We benchmark these attacks on the CIFAR-100 dataset and observe that they bear

different trade-offs in terms of the count of queries required to fool the models

and the L0 adversarial distance. However, EvoBA strikes out as being the fastest

of the three, so we further focus on comparing it against well-known adversarial

attacks. We also build and open-source 1 a tool that can be used to run quick

robustness checks of generic computer vision classifier systems.

EvoBA shows efficiency and efficacy through results that are in line with much

more complex state-of-the-art black-box attacks such as AutoZOOM. It is more

query-efficient than SimBA, a simple and powerful baseline black-box attack,

and has a similar level of complexity. Therefore, we propose it both as a new

strong baseline for black-box adversarial attacks and as a fast and general tool for

gaining empirical insight into how robust image classifiers are with respect to L0

adversarial perturbations.

There exist fast and reliable L2 black-box attacks, such as SimBA, and L∞ black-

box attacks, such as DeepSearch. We propose EvoBA as a query-efficient L0

black-box adversarial attack which, together with the aforementioned methods,

can serve as a generic tool to assess the empirical robustness of image classifiers.

The main advantages of such methods are that they run fast, are query-efficient,

and can easily be integrated in image classifiers development pipelines.

While our attack minimises the L0 adversarial perturbation, we also report L2,

and notice that we compare favorably to the state-of-the-art L2 black-box attack,

AutoZOOM, and of the L2 strong baseline, SimBA.

⋆ Corresponding author
1 https://github.com/andreiilie1/BBAttacks

2 Ilie et al.

1 Introduction

With the increasing performance and applicability of machine learning algorithms, and

in particular deep learning, the safety of these methods has become more relevant than

ever. There has been growing concern over the course of the last few years regarding

adversarial attacks, i.e., algorithms which are able to fool machine learning models with

minimal input perturbations, as they were shown to be very effective.

Ideally, theoretical robustness bounds should be obtained in the case of critical soft-

ware involving image classification components. There has been important recent re-

search in this direction [10, 13, 7, 25], but most often the algorithms generating these

bounds work for limited classes of models, do not scale well with larger neural net-

works, and require complete knowledge of the target model’s internals. Therefore, com-

plementary empirical robustness evaluations are required for a better understanding of

how robust the image classifiers are. In order to achieve this, one has to come up with

effective adversarial attacks that resemble real-life conditions, such as in the black-box

query-limited scenario.

In general, adversarial attacks are classified as either white-box or black-box. White-

box adversarial attacks, where the attacker has complete knowledge of the target model,

were shown to be particularly successful, most of them using gradient-based methods

[31, 9, 2]. In the case of black-box adversarial attacks, the attacker can only query the

model, and has no access to the model internals and to the data used for training. These

restrictions make the black-box adversarial setup resemble more real-life scenarios. Fur-

thermore, the attacker usually has to minimise the number of queries to the model, either

due to time or monetary constraints (such as in the case of some vision API calls).

Previous state-of-the-art black-box adversarial attacks focused on exploiting the

transferability phenomenon, which allowed the attackers to train substitute models im-

itating the target one, and perform white-box attacks on these [22, 23]. More recently, a

class of black-box adversarial attacks, called Zeroth Order Optimization (ZOO) [5], has

gained momentum, providing one of the current state-of-the art attacks, AutoZOOM

([32]). Interestingly, a much simpler algorithm, SimBA (Simple Black-box Attack)

[11], achieves a similar, slightly lower success rate than state-of-the-art attacks, in-

cluding AutoZOOM, and requires a lower number of queries. Therefore, SimBA is

proposed to be used as a default baseline for any adversarial attack, but it is itself an

unexpectedly powerful algorithm.

We propose EvoBA, EvoBA-E, and EvoBA-ET: a class of untargeted black-box

adversarial attacks that make use of simple evolutionary search strategies. Namely,

EvoBA is a simple mutation-based greedy strategy, while EvoBA-E and EvoBA-ET

are variations of the classic ǫ−greedy strategy. These attacks only require access to the

output probabilities of the target model for a given input and need no extra training.

We benchmark the three attacks we introduce on the CIFAR-100 dataset and com-

ment on the results and advantages of each. While from the query efficiency and pertur-

bation norm points of view there are some trade-offs to be made, from the running time

point of view EvoBA is the clear winner. EvoBA is usually on par or very close to the

best results obtained by EvoBA-E or EvoBA-ET, but at least three times faster. There-

fore, we focus our further analysis on EvoBA. We also build an open source tool for

EvoBA 3

fast assessments of arbitrary computer vision classifiers and provide usage examples.

The code can be found at https://github.com/andreiilie1/BBAttacks.

EvoBA is more query-efficient than SimBA and AutoZOOM, and has a perfect

success rate, surpassing SimBA and being aligned with AutoZOOM from this point

of view. We designed EvoBA to minimize the L0 adversarial perturbation, however we

also report the L2 norms of the perturbations it generates and compare them with the

L2 norms of AutoZOOM and SimBA, which are L2 adversarial attacks. Despite our

algorithm aiming to minimize a different metric than these methods, we achieve similar

L2 norms in the perturbations we generate, and a significantly better L0.

EvoBA is a model-agnostic empirical tool that can be used as a test to assess how

robust image classifier systems are with respect to L0 noise. Therefore, EvoBA is both

a simple and strong baseline for black-box adversarial attacks, but also a generic L0

robustness evaluation method that can be used in a fast and reliable way with any system

involving image classification.

While L2 (Euclidean distance) and L∞ (maximum absolute pixel-wise distance)

adversarial attacks are more commonly studied, L0 (count of modified pixels distance)

adversarial attacks can fit better real-life, physical settings, such as in the well-known

cases of graffiti perturbations on stop-signs from [8] and of adversarial eyeglass frames

from [27]. As [3] notes, “physical obstructions in images or malicious splicing of audio

or video files are realistic threats that can be modeled as L0 noise, whereas L2 attacks

may be more difficult to carry out in the physical world”.

The main property of adversarially perturbed images is that they are very close from

a human point of view to the original benign image, but trick the model into predicting

the wrong class. While the notion of “closeness from a human perspective” is hard

to quantify, there exists general consensus around using the L0, L2, and L∞ norms as

proxies for measuring the adversarial perturbations [33, 23, 22, 11, 34].

EvoBA focuses on the L0 norm, is fast, query-efficient, and effective. Therefore, we

propose using it together with similarly fast and efficient methods that focus on different

norms, such as SimBA, which focuses on L2, and DeepSearch ([34]), which focuses

on L∞, to empirically evaluate the robustness of image classifiers. These methods can

act together as a fast and general toolbox used along the way of developing systems

involving image classification models. EvoBA can easily be incorporated in develop-

ment pipelines for gaining fast insights into a model’s L0 empirical robustness, only

requiring access to the classifier’s prediction method and to a sample of target images

together with their corresponding labels.

Moreover, many adversarial training methods focus on improving the robustness

with respect to L0, L2, and L∞ perturbations [26]. Therefore, it is important to be able

to empirically evaluate how much the robustness of target models improves due to ad-

versarial training with respect to these norms. A toolbox consisting of efficient and

reliable attacks such as EvoBA, DeepSearch, and SimBA can serve this purpose.

EvoBA is most surprising through its dual nature, acting both as a strong and fast

black-box adversarial attack, such as SimBA, but also achieving results which are in

line with much more complex, state-of-the-art black-box attacks, such as AutoZOOM.

To wrap it up, we propose EvoBA, EvoBA-E, and EvoBA-ET as standard strong

baselines for any black-box adversarial attacks. We focus on EvoBA due to being the

4 Ilie et al.

fastest and making it most suitable to be used as a tool that can provide empirical in-

sight into how robust image classifiers are. Its main advantages are that it is as effective

as state-of-the-art black-box attacks, such as AutoZOOM, and more query-efficient.

While it is an L0 adversarial attack, it achieves L2 perturbations of similar magni-

tudes with state-of-the-art L2 black-box attacks and requires no training. Furthermore,

EvoBA is highly parallelisable, which allows it to run significantly faster than SimBA,

the other powerful baseline black-box attack.

Our contributions:

– We propose EvoBA, EvoBA-E, and EvoBA-ET, which are fast, query-efficient,

and effective black-box L0 adversarial attacks. We compare the three attacks on

a standard dataset (CIFAR-100) and decide to focus on EvoBA, due to being the

fastest, while not trading off too much query efficiency. EvoBA can be used as a

generic test for assessing the L0 robustness of image classifiers.

– We show how EvoBA compares favourably to the state-of-the-art black-box L2

attack AutoZOOM, while being significantly simpler.

– We show how EvoBA (an L0 attack) serves a similar purpose to the other strong

and simple baselines such as SimBA (an L2 attack) and DeepSearch (an L∞ at-

tack). These methods are suitable to be run together, as part of a robustness testing

toolbox, while developing any image classification model.

– We open-source our work at https://github.com/andreiilie1/BBAttacks, where we

provide code examples about how to use EvoBA as a tool on custom models and

datasets.

Paper outline:

– In Section 2 we do a quick literature review around related work and position es-

pecially EvoBA (which will be the subject of head-to-head comparison against the

attacks from the literature review) with respect to the presented methods.

– In Section 3 we introduce EvoBA together with the threat model we use. We pro-

vide pseudocode for EvoBA and explain the main ideas behind it. We also analyze

its space and time complexities.

– In Section 4 we present our experimental methodology and setup, provide and

analyse the quantitative results of EvoBA in comparison with other methods, and

present some qualitative results.

– In Section 6 we wrap-up the main findings and propose future research directions

for our work.

2 Related Work

While the black-box adversarial attack settings are far more restrictive than the white-

box ones, their similarity to real-life scenarios has increasingly brought them into the

spotlight of machine learning safety.

One general approach for black-box attacks exploits the transferability property of

adversarial examples [22, 23]. The attacker can train their own substitute model and

perform white-box attacks on it, which usually yield good adversarial samples for the

EvoBA 5

target model as well. However, [29] showed the limitations of this method, highlighting

how not all white-box attacks and not all architectures transfer well.

A class of approaches that do not rely on transferability is based on Zeroth Order

Optimization (ZOO), which tries to estimate the gradients of the target neural network

in order to generate adversarial examples. One of the early algorithms in this direction,

ZOO [5] managed to reach similar success rates with state-of-the-art white-box attacks,

producing adversarial samples of comparable visual quality. In general, Zeroth Order

Optimization refers to any functional optimization where gradients are not available, so

the term has commonly been adapted in the field of black-box adversarial attacks as a

general category of methods that estimate the gradients.

The main disadvantage of traditional ZOO-type attacks is that they usually require

plenty of queries for approximating the coordinate-wise gradients. AutoZOOM [32]

solved this issue by performing a dimensionality reduction on top of the target image,

and then using the ZOO approach in the reduced space. It achieved results that are

aligned with previous ZOO state-of-the-art methods, but managed to reduce the query

count by up to 93% on datasets such as MNIST, ImageNet, and CIFAR-10. Our method

is comparable to AutoZOOM in terms of performance, achieving a similar success

rate with a slightly lower query count, but has the main advantage of being consider-

ably simpler. Our approach does not need to estimate gradients at all and, compared to

AutoZOOM-AE - the more powerful attack from [32], it does not require any form of

training or knowledge about the training data. In addition, AutoZOOM demands access

to the output probabilities over all classes, unlike our method, which only requires the

output class and its probability. While AutoZOOM is an attack that minimizes the L2

perturbations norm, the three EvoBA attacks are focused on minimising the L0 norm.

However, we also report the L2 of the attack we focus on (EvoBA) and notice that it is

comparable to AutoZOOM’s results.

SimBA (Simple Black-box Adversarial Attack, [11]) is a very simple strategy that

has comparable performance to the significantly more complex AutoZOOM. The method

randomly iterates through all pixels, perturbing them with fixed noise amounts if this

makes the model output a lower probability for the correct class. EvoBA has a similar

complexity to SimBA, both of them being good candidates for strong adversarial attack

baselines. SimBA is mainly powered up by the randomness of choosing which pixel to

perturb, and the only information it uses is whether the correct probability decreases.

In comparison, EvoBA strikes a better balance between exploration and exploitation,

which is common for evolutionary algorithms. This makes EvoBA achieve a slightly

better success rate than SimBA, with a lower query budget. Similarly to AutoZOOM,

SimBA is an L2 adversarial attack, while EvoBA focuses on L0. Nevertheless, the av-

erage L2 perturbation norm of EvoBA is slightly higher, but comparable to SimBA’s

results. We also run SimBA and remark that the L0 perturbation norms that EvoBA

achieves are significantly better. Furthermore, SimBA does not allow for any kind of

parallelisation, while the evolution strategy we use in EvoBA is highly parallelisable

and, accordingly, faster.

DeepSearch ([34]) is another simple, yet very efficient black-box adversarial at-

tack, which achieves results in line with much more complex methods. It is an L∞

attack, perturbing with very high probability all the pixels (maximal L0 norm of the

6 Ilie et al.

perturbations), which makes it incomparable with the L0 attack EvoBA. Similarly,

while EvoBA optimizes the L0 norm of the perturbations, it most often produces high

L∞ distortions, with sometimes near-maximal perturbations for the few chosen pixels.

While both DeepSearch and EvoBA have non-complex implementations, EvoBA is

conceptually simpler. DeepSearch is based on the idea of linear explanations of adver-

sarial examples ([9]), and exploits three main aspects: it devises a mutation strategy to

perturb images as fast as possible, it performs a refinement on top of the earliest adver-

sarial example in order to minimise the L∞ norm, and adapts an existing hierarchical-

grouping strategy for reducing the number of queries ([21]). Furthermore, EvoBA has

the advantage of being highly parallelisable, while DeepSearch is inherently sequen-

tial. DeepSearch, EvoBA, and SimBA are complementary methods that serve the sim-

ilar purpose of efficient and reliable black-box attacks working under the query-limited

scenario, each optimising the produced perturbations under a different norm.

As black-box adversarial attacks are ultimately search strategies in obscured en-

vironments, it has been natural to also explore the path of evolutionary algorithms.

One notable example is GenAttack [1], an approach that follows the classic pattern

of genetic algorithms. While it was developed at the same time with AutoZOOM, the

authors report similar results for the targeted versions of the two methods, without pro-

viding any untargeted attack results. We focused on the untargeted scenario, and our

results are also in line with AutoZOOM. GenAttack focuses on minimising the L∞

perturbation norm, and, in expectation, the L0 it achieves is equal to the count of all pix-

els in the image. In comparison, EvoBA is an L0 attack, achieving considerably small

perturbations under this norm. In addition, EvoBA is less complex and more suitable

for a strong baseline attack.

A related approach to ours, which also makes use of evolution strategies, is [20],

which tries to minimise the L∞ norm of adversarial perturbations. It proposes different

evolution strategies applied on top of a tiling approach inspired by [16], where the

authors use a Bandits approach. The attacks they propose focus on minimising the L∞

norm of the perturbations and the authors do not report any other results regarding

different norms. The L2 cost of this approach is not clear, one of the main issues being

that it can become rather high. The L0 is equal in general to the number of pixels in

the entire image, in comparison with EvoBA, which is L0-efficient. Qualitatively, the

applied adversarial tiles it generates are easily perceivable by a human, yielding grid-

like patterns on top of the target image, while the samples produced by EvoBA are

imperceptible (Figure 7, ImageNet) or look like benign noise (Figure 4, CIFAR-10).

EvoBA-E and EvoBA-ET are also based on evolutionary algorithms but are sig-

nificantly less complex than GenAttack and the work introduced in [20], being simple

alterations of the well-known ǫ − greedy strategy. EvoBA-E and EvoBA-ET are most

similar to the work introduced in [20], as ǫ− greedy are naturally similar to most Ban-

dits approaches. Our 2 attacks also take a tile-based approach in generating the pertur-

bations, but the tiles are significantly smaller, not allowing for very visible artifacts, and

focus on minimising L0 (as opposed to L∞).

EvoBA 7

3 The Methods

3.1 Notation and threat model

We work under black-box adversarial settings, with limited query budget and L0 per-

turbation norm. We consider the untargeted attack scenario, where an adversary wants

to cause perturbation that changes the original, correct prediction of the target model

for a given image to any other class.

We denote by F the target classifier. By a slight abuse of notation, we let F(x)
be the output distribution probability of model F on input image x and Fk(x) be the

output probability for class k. Then, F can be seen as a function F : I 7→ R
K , where I

is the image space (a subset of Rh×w×c) and K is the number of classes.

As we are working under black-box conditions, we have no information about the

internals of F, but we have query access to it, i.e., we can retrieve F(x) for any x ∈ I.

In fact, we will see that for our method we just need access to argmaxk Fk(x) and to

its corresponding probability.

Let us consider an image x, which is classified correctly by F. The untargeted attack

goal is to find a perturbed version x̃ of x that would make

argmax
k

Fk(x̃) 6= argmax
k

Fk(x), (1)

constrained by the query and L0 bounds.

3.2 Solving a surrogate problem

It is usual for black-box attacks to deal with a surrogate optimization problem that tries

to find a perturbed version x̃ of x that minimizes F(x̃). This is clearly not equivalent to

the formulation at (1), but it often yields good adversarial examples and is easier to use

in practice.

In loose terms, this surrogate optimization problem can be formulated as follows

for an image x with true label y:

min
δ∈R

h×w×c

Fy(x+ δ),w.r.t. queries ≤ Q, ‖δ‖
0
≤ ǫ. (2)

In order to tackle (2), we adopt simple evolution strategies that yields results in line

with state-of-the-art black-box attacks.

3.3 EvoBA

Our method (Algorithm 1, EvoBA) works by iteratively creating generations of per-

turbed images according to the following process: it selects the fittest individual in each

generation (with lowest probability to be classified correctly), starting from the unper-

turbed image, then samples small batches of its pixels and randomly perturbs them,

stopping when the fittest individual is either no longer classified correctly or when one

of the constraints no longer holds (when either the query count or the distance become

too large).

8 Ilie et al.

Algorithm 1: EvoBA

Data: black-box model F, image x, correct class k, query budget Q, L0 threshold ǫ,

pixel batch size B, generation size G

1 PARENT ← x

2 PREDICTION ← Fk(x)
3 QUERY CNT ← 1
4 while ‖PARENT − x‖

0
< ǫ and QUERY CNT < Q do

5 OFFSPRING ← []
6 FITNESSES ← []
7 PIXELS ← SAMPLE PIXELS(PARENT, B)
8 for IDX ← 1 . . . G do

9 CHILD ← PARENT

10 for PIXEL ← PIXELS do

11 CHILD[PIXEL]← SAMPLE VALUES()
12 OFFSPRING ← OFFSPRING + [CHILD]
13 PRED CHILD ← F(CHILD)
14 QUERY CNT ← QUERY CNT + 1
15 if argmax PRED CHILD 6= k then

16 return CHILD

17 FITNESSES ← FITNESSES + [1− PRED CHILDk(CHILD)]

18 BEST CHILD ← argmax(FITNESSES)
19 PARENT ← OFFSPRING[BEST CHILD]

20 return PERTURBATION FAILED

The function SAMPLE PIXELS(PARENT, B) does a random, uniform sample

over the pixels of PARENT, and returns a list of size at most B (the sampling is done

with repetition) containing their coordinates. Its purpose is to pick the pixels that will

be perturbed. The function SAMPLE VALUES generates pixel perturbed values. For

our L0 objective, we let it pick uniformly a random value in the pixel values range.

The algorithm follows a simple and general structure of evolution strategies. The

mutation we apply on the best individual from each generation is selecting at most B

pixels and assigning them random, uniform values. The fitness of an individual is just

the cumulative probability of it being misclassified.

One important detail that is not mentioned in the pseudocode, but which allowed us

to get the best results, is how we deal with multi-channel images. If the target image has

the shape h × w × c (height, width, channels), then we randomly sample a position in

the h×w grid and add all of its channels to the PIXELS that will be perturbed. We hy-

pothesise that this works well because of a “inter-channel transferability” phenomenon,

which allows EvoBA to perturb faster the most sensible zones in all the channels. Note

that this yields a cost of c for every grid-sample to the L0 perturbation norm, so in

the case of ImageNet or CIFAR-10 images it counts as 3, and in the case of MNIST it

counts as 1.

The query budget and L0 constraints impose a compromise between the total num-

ber of generations in an EvoBA run and the size G of each generation. The product of

these is approximately equal to the number of queries, so for a fixed budget we have to

EvoBA 9

strike the right balance between them. The bigger G is, the more we favour more ex-

ploration instead of exploitation, which should ultimately come at a higher query cost.

The smaller G is, the search goes in the opposite direction, and we favour more the ex-

ploitation. As each exploitation step corresponds to a new perturbation, this will result

in bigger adversarial perturbations. Furthermore, lacking proper exploration can even

make the attack unsuccessful in the light of the query count and L0 constraints.

The batch size B allows selecting multiple pixels to perturb at once in the mutation

step. It is similar to the learning rate in general machine learning algorithms: the higher

it is, the fewer queries (train steps, in the case of machine learning algorithms) we need,

at the cost of potentially missing local optimal solutions.

The space complexity of Algorithm 1 is O(G × size(x)). As the size of x is in

general fixed, or at least bounded for specific tasks, we can argue that the space com-

plexity is O(G). However, EvoBA can be easily modified to only store two children at

a moment when generating new offspring, i.e., the currently generated one and the best

one so far, which makes EvoBA’s space complexity O(1).

The dominant component when it comes to time complexity is given by F queries.

In the current form of Algorithm 1, they could be at most min(ǫ
B

× G,Q). Assum-

ing that the budget Q will generally be higher, the time complexity would roughly be

O(ǫ
B
×G× (query cost of F)). This is merely the sequential time complexity given by

the unoptimised pseudocode, however the G F-queries can be batched, yielding much

faster, parallelised runs.

3.4 EvoBA-E and EvoBA-ET

EvoBA-E (Algorithm 2) is based on the well-known ǫ−greedy strategy. It is parametrised

by a set of pixel groups {P1, P2, . . . , PG} that form a partition (i.e Pi ∩ Pj = Ø for

any i 6= j and
⋃

i Pi represents all pixel indices of an image) and an ǫ that represents

the trade-off between exploration and exploitation that EvoBA-E will make (higher ǫ

means higher exploration).

We explore attacking a random pixel group from the Pi’s with probability ǫ and

attack one of the pixel groups with maximum historical average reward (decrease of

probability of an image to be classified correctly) with probability 1− ǫ.

For attacking a random pixel group Pi we randomly sample a pixel from it and

change its value according to a randomised schema. In our experiments, we will choose

new pixels according to uniform perturbations. Note that this is prone to generate high

L2 perturbations, but our goal is to minimise the L0 distortion, modifying as few pixels

as possible.

We note that this is not a standard ǫ − greedy / multi-armed bandits setup, as the

expected rewards we compute are not independent of the history of samples. Pixels

changed in the past will affect the future probabilities of attacking randomly selected

groups in the future.

Unlike the classic multi-armed bandits approaches, we exploit the advantage of be-

ing able to check the potential rewards without necessarily taking their inflicted loss.

Therefore, we assess whether the random pixel modifications we do decrease the prob-

abilities of an image being classified correctly, and only in this case update the image

10 Ilie et al.

we are attacking. The cost we pay for any operation, no matter if it has a positive reward

or not, is consuming our query budget.

In our experiments, the chosen pixel groups {P1, P2, . . . , PG} form a grid over the

image. There are other non-trivial choices, such as segmentation-based pixel groups.

One could even use light explainability methods such as LIME ([24]) that also provides

a simple image segmentation schema, further utilising the importance scores as priors

for sampling over the attacked pixel groups. We leave this for further research.

EvoBA-ET works similarly to EvoBA-E, with a single change in the way it updates

the currently attacked image. Instead of just requiring the reward to be positive in order

to update the image, it requires the reward to be greater than a small threshold. Every

max rounds until decay the image hasn’t been updated, we multiply the threshold

by a decay factor < 1, which is close to 1. This will allow the search to escape

local plateaus. Once we succeed in updating the image, we multiply the threshold by

an increase factor > 1, which is also close to 1. We denote the initial probability

threshold by init threshold.

The main disadvantage of EvoBA-E and EvoBA-ET against EvoBA is that they

are not easily parallelisable. Their logic is highly iterative, with exploration alternat-

ing exploitation randomly. In the case of EvoBA, exploration and exploitation happens

naturally at each iteration, and the exploration is highly parallelisable.

4 Experiments

4.1 Experimental Setup

We used TensorFlow/Keras for all our experiments. All the experiments were performed

on a MacBook with 2,6 GHz 6-Core Intel Core i7, without a GPU.

We ran locally SimBA, the strong and simple L2 black-box adversarial attack, and

compared EvoBA to both our local SimBA results and reported results from the paper

introducing it ([11]).

We also monitored and compared against the AutoZOOM results, but for these

we have used different target models, as the main focus was on comparing to SimBA

(which already achieves results which are in line with state-of-the-art approaches, such

as AutoZOOM, being more query-efficient), so we adopted their models.

We don’t do a head-to-head comparison with the efficient L∞ black-box baseline

DeepSearch, as it is a direct consequence of their approach that they get near-maximal

L0 perturbations, while EvoBA aims to optimize the L0 norm. Similarly, EvoBA cre-

ates high L∞ perturbations, as it modifies very few pixels with random, possibly big

quantities. Therefore, DeepSearch and EvoBA are complementary methods that should

be used together, but a direct comparison of their results is not suitable, as the L0 and

L∞ objectives are partly contradictory.

In order to reduce our algorithm selection bias, we initially run a head-to-head

comparison of our three proposed methods on top of CIFAR-100, attacking a classic

VGG-16 model ([28]). For this, we fix 1000 randomly sampled CIFAR-100 images,

and run various configurations of EvoBA, EvoBA-E, and EvoBA-ET against them.

We will comment on why it makes the most sense to choose EvoBA as the engine of

EvoBA 11

Algorithm 2: EvoBA-E

Data: black-box model F, image x, correct class k, query budget Q, L0 threshold ǫ,

count of pixel groups G, pixel groups (a partition of pixel indices)

PIXEL GROUPS, exploration ratio ǫ

1 EXPLORATION COUNT ← [0]×G

2 EXPLORATION VALUES ← [0]×G

3 PARENT ← x

4 PREDICTION ← Fk(x)
5 QUERY CNT ← 1
6 while ‖PARENT − x‖

0
< ǫ and QUERY CNT < Q do

7 EXPLORE ← (UNIFORM RANDOM(0,1) < ǫ)
8 if EXPLORE then

9 GROUP ← UNIFORM DISCRETE RANDOM(0,G)

10 else

11 GROUP ← argmax(EXPLORATION VALUES)
12 SIZE SAMPLE ← size(PIXEL GROUPS[GROUP])
13 ATTACK PIXEL IDX ← UNIFORM DISCRETE RANDOM(0, SIZE SAMPLE)
14

15 CHILD ← COPY(PARENT)
16 CHILD[ATTACK PIXEL]← RANDOM PIXEL()
17

18 PRED CHILD ← F(CHILD)
19 QUERY CNT ← QUERY CNT + 1
20 REWARD ← PREDICTION − PRED CHILDk

21

22 N ← EXPLORATION COUNT[GROUP]

23 EXPLORATION COUNT[GROUP] ← N + 1
24

25 V ← EXPLORATION VALUES[GROUP]

26 EXPLORATION VALUES[GROUP] ← V · N

N+1
+ REWARD · 1

N+1

27

28 if argmax PRED CHILD 6= k then

29 return CHILD

30

31 if REWARD > 0 then

32 PARENT ← CHILD

33 PREDICTION ← PRED CHILDk

34 return PERTURBATION FAILED

12 Ilie et al.

a robustness-checking tool, and then move on to compare it against other black-box

adversarial attacks on different datasets.

We ran multiple experiments over four other datasets: MNIST [18], CIFAR-10 [17],

and ImageNet [6].

On MNIST we have been running our experiments on a classic target LeNet archi-

tecture [19], while SimBA does not report any results on this dataset, and AutoZOOM

uses a similar architecture to ours, with additional dropout layers (taken from [4]). How-

ever, their target models are trained by default with distillation, which is likely to make

perturbations harder. For comparing with SimBA on MNIST, we ran the attack our-

selves and aggregated various metrics.

We initially used MNIST to validate EvoBA against a completely random black-

box adversarial attack, similar to the one introduced in [14]. The purely random strat-

egy iterates by repeatedly sampling a bounded number of pixels from the original target

image and changing their values according to a random scheme. While the purely ran-

dom method introduced in [14] achieves surprising results for such a simple approach,

it does a very shallow form of exploration, restarting the random perturbation process

with each miss (i.e., with each perturbed image that is still classified correctly). We

will refer to the completely random strategy as CompleteRandom in the experiments

below.

For CIFAR-10, we use a ResNet-50 [12] target model, similarly to SimBA, and we

compare to both their reported results and to our local run of their attack.

For ImageNet, we have used a similar target ResNet-50 to the one used in SimBA,

while AutoZOOM used InceptionV3 [30].

We will use the following shorthands in the results below: SR (Success Rate), QA

(Queries Average), L0 (Average of L0 successful perturbations), L2 (Average L2 norm

of successful perturbations).

We will refer to EvoBA that perturbs at most B pixels at once and that has genera-

tion size G as EvoBA(B,G). We will explicitly mention in each section which thresh-

olds were used for the experiments.

For all the local runs of SimBA, we have been using ǫ = 0.2 (a hyperparameter

specific to SimBA), which was also used in the paper [11]. We only replicated locally

the results of the Cartesian Basis version of SimBA, which resembles more an L0 ad-

versarial attack, but which is less efficient than the Discrete Cosine Transform (DCT)

version from the paper. Therefore, we will use SimBA-LCB to refer to the local run of

SimBA on top of the exact same target models as EvoBA, with ǫ = 0.2. We will use

SimBA-CB to refer to the results of the Cartesian Basis paper results, and SimBA-DCT

for the DCT paper results.

In the cases where the AutoZOOM paper [32] provides data, we will only compare

to AutoZOOM-BiLIN, the version of the attack which requires no additional training

and data, and which is closer to our and SimBA’s frameworks.

4.2 Benchmarks on CIFAR-100

As introduced in the experimental setup, we denote the EvoBA that perturbs at most B

pixels at once and that has generation size G by EvoBA(B,G).

EvoBA 13

For both EvoBA-E and EvoBA-ET we use pixel groups given by 4 × 4 patches,

yielding a chess-like 8× 8 grid. We denote the EvoBA-E with an exploration ratio of ǫ

by EvoBA-E(ǫ). We denote the EvoBA-ET with an exploration ratio of ǫ, rounds until

decay R, decay factor α, and increase factor β by EvoBA-ET(ǫ, R, α, β). We fix the

initial threshold to 0.1, which represents requiring perturbations to decrease the correct

probability by 10%. This likely means the threshold will be decreased fast through

the decaying mechanism, with the advantage of allowing to capture early the obvious

perturbations with huge impact.

We introduce our CIFAR-100 benchmark results in Table 1.

Increasing the number of individuals in a generation G for EvoBA(B,G) decreases

the L0 distance of the adversarial samples we find, favouring exploration, at the cost of

more queries. Increasing the count of pixels to be attacked in a batch B has the effect

of finding adversarial examples faster, through lower counts of queries, but at larger L0

distances.

In the case of EvoBA-E, there is no obvious performance disadvantage for either

the query count or the L0 distance by growing ǫ up to 0.8, point at which the perfor-

mance plateaus. Therefore, EvoBA-E(0.8) seems to provide the best results, both in

terms of efficiency and of average perturbation L0 distance. This means that the opti-

mal EvoBA-E is highly explorative, learning and updating the potential rewards over

the image groups 80% of the time, and targeting the highest reward groups in only 20%
of the time. We observe that EvoBA-E(0.8) is competitive with the best EvoBA(B,G)
results.

EvoBA-E is able to achieve decent L0 average distances (order of 60) at the cost of

very few queries (order of 40− 50). On the other side, EvoBA is able to achieve signif-

icantly lower L0 distances (even down to the order of 10 − 40), by using significantly

more queries (in the order of 100 − 200). This means that there is no clear winner in

EvoBA versus EvoBA-E and one has to choose the appropriate trade-off.

EvoBA-ET works best when favouring a balanced split of exploration and exploita-

tion (ǫ = 0.4 in our results) and when allowing a very fast decrease of the reward thresh-

old that it applies (α = 0.5) and a slow increase (β = 1.05). While the results it gets

are competitive, there exist EvoBA configurations which are strictly better from every

point of view than EvoBA-ET. Therefore, in our search for the perfect attack to apply

as part of a generic robustness tool, we focus our attention on EvoBA-E and EvoBA.

Inspecting some of the best EvoBA runs, we notice that EvoBA(1, 40) ran in 0.415s
per image sample, EvoBA(8, 40) in 0.22s per image, and EvoBA(4, 10) in 0.335s per

image. In comparison, EvoBA-E(0.1) ran in 1.25s per image, and EvoBA-E(0.8) in

1.19s per image.

This means that the best EvoBA runs are faster by three times than the best runs of

EvoBA-E.

As our main motivation is to provide a fast and reliable black-box attack that de-

velopers can use for fast robustness iterations on their computer vision classifiers, we

resort to using the method that is definitely faster: EvoBA. From now on, we will focus

our attention on EvoBA experiments against other well-known black-box adversarial

attacks. EvoBA is also the core of our fast and reliable robustness-checking tool.

14 Ilie et al.

SR QA L0

EvoBA(1,10) 99.9% 95.08 28

EvoBA(1,20) 100% 147.5 21.82

EvoBA(1,40) 100% 236.4 17.56

EvoBA(1,80) 100% 400 14.9

EvoBA(2,10) 100% 70.09 40.97

EvoBA(2,20) 100% 107.8 31.8

EvoBA(2,40) 100% 180.6 26.72

EvoBA(2,80) 100% 311.4 23.12

EvoBA(4,10) 100% 49.59 57.2

EvoBA(4,20) 100% 80.18 46.8

EvoBA(4,40) 100% 135.7 39.91

EvoBA(4,80) 100% 236.8 35.07

EvoBA(8,10) 100% 35.96 81.69

EvoBA(8,20) 100% 58.3 67.44

EvoBA(8,40) 100% 101.4 59.24

EvoBA(8,80) 100% 182 53.55

EvoBA-E(0) 99.9% 55.88 66.05

EvoBA-E(0.01) 100% 55.82 65.6

EvoBA-E(0.1) 100% 55.07 64.94

EvoBA-E(0.2) 100% 51.08 63.73

EvoBA-E(0.4) 100% 46 61.9

EvoBA-E(0.6) 100% 42.76 58.6

EvoBA-E(0.8) 100% 42 57.68

EvoBA-ET(0.2, 20, 0.9, 1.05) 100% 610.7 36.09

EvoBA-ET(0.2, 50, 0.5, 1.05) 100% 247.8 38.77

EvoBA-ET(0.4, 20, 0.5, 1.01) 100% 148.8 40.79

EvoBA-ET(0.2, 20, 0.5, 1.05) 100% 158.4 43.33

Table 1. Benchmarks of our proposed methods on top of CIFAR-100.

4.3 Results on MNIST

We only experiment with EvoBA(B,G) with B > 1 on MNIST, and focus on B = 1
for subsequent experiments, for which we impose an L0 perturbation limit of 100 and

a query threshold of 5000.

Running SimBA (SimBA-LCB) on a local machine with the mentioned specifica-

tions, requires an average of 93s per MNIST sample. In comparison, all the EvoBA

experiments on MNIST took between 1.94s and 4.58s per sample.

We also report the CompleteRandom results, for which we impose an L0 pertur-

bation limit of 100 and a query threshold of 5000, similarly to the constraints we use

for EvoBA.

We randomly sampled 200 images from the MNIST test set and ran SimBA-LCB,

EvoBA, and CompleteRandom against the same LeNet model [19]. For reference, we

also add the results of AutoZOOM, which are performed on a different architecture.

Therefore, the results are not directly comparable with them. L0 data is not available

for AutoZOOM, but it is usual for ZOO methods to perturb most of the pixels, so it is

very likely that the associated L0 is very high.

EvoBA 15

SR QA L0 L2

EvoBA(1,10) 100% 301.4 29.32 3.69

EvoBA(1,20) 100% 549.4 26.88 3.58

EvoBA(1,40) 100% 894.2 21.92 3.33

EvoBA(2,20) 100% 312.6 30,72 3.65

EvoBA(2,30) 100% 265.4 38,6 3.89

SimBA-LCB 56% 196.86 48.16 2.37

AutoZOOM-BiLIN 100% 98.82 - 3.3

CompleteRandom 60.5% 576.1 93.98 5.59

Table 2. MNIST results. SimBA-LCB has a very low success rate in the case of a LeNet archi-

tecture. If we take a look at the 56% images perturbed by EvoBA(1,10) for example, the QA be-

comes 192.8, which is not apparent from the table, but which is more efficient than SimBA-LCB.

We remark that all the EvoBA configurations have a 100% success rate, and SimBA-LCB

achieves 56%. While SimBA generally achieves near-perfect success rates on other

tasks, one could argue that attacking a simple target model such as LeCun on a rela-

tively easy task such as MNIST is much harder than performing attacks for more in-

tricate target models and tasks. This is a natural trade-off between the complexity of a

model and its robustness.

Fig. 1. Histogram of L0 perturbation norms obtained by EvoBA(1,30) on CIFAR-10 with target

model ResNet-50. The distribution is very heavy on small values, with few outliers.

If we restrict EvoBA(1,10) to its top 56% perturbed images in terms of query-

efficiency, it achieves an average of 192.79 queries, which is below SimBA-LCB’s

queries average of 196.86. Similarly, if we restrict EvoBA(1,10) to its top 56% per-

16 Ilie et al.

Fig. 2. Histogram of query counts obtained by EvoBA(1,30) on CIFAR-10 with target model

ResNet-50. The distribution is very heavy on small values, with few outliers.

turbed images in terms of L2-efficiency, it achieves an L2 of 3.07, which is higher, but

closer to SimBA-LCB’s L2 result of 2.37.

CompleteRandom achieves a success rate of 60.5%, far below EvoBA’s 100%, but

surprisingly above SimBA-LCB’s 56%. However, the nature of CompleteRandom’s

perturbations is to lie at high distances, achieving L0 and L2 distances that are signifi-

cantly higher than the distances achieved by the other methods.

4.4 Results on CIFAR-10

We impose an L0 perturbation limit of 100, and a query threshold of 2000 for both

EvoBA and CompleteRandom. We randomly sample 2000 images for EvoBA and 50
images for SimBA-LCB. EvoBA and SimBA-LCB are run on the exact same target

ResNet-50 model, while SimBA-DCT and SimBA-CB also run on a target ResNet-50

model. AutoZOOM-BiLIN targets an InceptionV3 model.

SimBA-LCB required an average of 26.15s per CIFAR-10 sample, while EvoBA

required 1.91s per sample.

All the attacks achieved 100% success rate in the CIFAR-10 experiments, with the

sole exception of CompleteRandom, which only got 69.5%. EvoBA(1,30) has a bet-

ter query average when compared to all the SimBA approaches, which targeted the

same ResNet-50 architecture. While EvoBA(1,30) targeted a different architecture than

AutoZOOM-BiLIN, we still remark how the latter is twice more query efficient. How-

ever, EvoBA(1,30) surprisingly achieves an L2 metric which is better than the reported

numbers of SimBA-CB and SimBA-DCT, which are L2 adversarial attacks.

It is not as much of a surprise the fact that EvoBA(1,30) achieves a considerably

better L0 metric when compared to SimBA-LCB (17.67 vs 99.46).

EvoBA 17

Fig. 3. The success rate (ratio of perturbed images) as a function of the maximum query budget.

We compare EvoBA with the strong baseline SimBA and with CompleteRandom on CIFAR-10.

Fig. 4. The first row contains original CIFAR-10 samples, which are classified correctly by

ResNet-50. The second row contains adversarial examples created by EvoBA, and are labelled

with the corresponding ResNet-50 predictions. Furthermore, we also provide the L2 and L0 dis-

tances between the unperturbed and perturbed samples.

In Figures 1 and 2 we plot the histograms of the L0 perturbation norms, respectively

of the query counts obtained by EvoBA(1,30). Both are highly skewed towards low

values, showing how EvoBA does well in finding quick small perturbations with respect

to the L0 norm.

The success rate of CompleteRandom (69.5%) and its low average query count

(161.2) are surprisingly good results for the trivial nature of the method, outlining once

again the lack of robustness in complex image classifiers. However, these come at the

18 Ilie et al.

SR QA L0 L2

EvoBA(1,30) 100% 178.56 17.67 1.82

SimBA-LCB 100% 206.5 99.46 1.73

SimBA-CB 100% 322 - 2.04

SimBA-DCT 100% 353 - 2.21

AutoZOOM-BiLIN 100% 85.6 - 1.99

CompleteRandom 69.5% 161.2 97.17 3.89

Table 3. CIFAR-10 results. AutoZOOM, SimBA-CB, and SimBA-DCT do not report the L0

metrics. However, we have discussed already why it is very likely that AutoZOOM perturbs

most of the pixels.

Fig. 5. Histogram of L0 perturbation norms obtained by EvoBA(1,15) on ImageNet with target

model ResNet-50. The distribution is very heavy on small values, with few outliers.

cost of an average L0 that is roughly 5.5 times higher and of an average L2 that is

roughly 1.4 times higher in comparison with EvoBA(1,30)’s average results.

In Figure 3 we compare EvoBA(1,30) with SimBA-LCB, while also providing the

CompleteRandom results. We plot the success rate as a function of the number of

queries in order to understand how each method behaves for different query budgets.

EvoBA(1,30) has a better success rate than SimBA-LCB for any query budget up to

2000. For very low query budgets (under 112 queries), CompleteRandom has a bet-

ter success rate than EvoBA(1,30), but it starts converging fast after their intersection

point to the success rate of 69.5%. It is natural for the CompleteRandom strategy to

find quick perturbations for the least robust images, as it performs bulk perturbations of

many pixels at once, while EvoBA does all perturbations sequentially. This illustrates

the natural trade-off between exploration and exploitation that any black-box optimiza-

tion problem encounters.

EvoBA 19

Fig. 6. Histogram of query counts obtained by EvoBA(1,15) on ImageNet with target model

ResNet-50. The distribution is very heavy on small values, with few outliers.

4.5 Results on ImageNet

We adopt a similar framework to AutoZOOM: we randomly sample 50 correctly clas-

sified images and run EvoBA on top of them. For EvoBA, similarly to SimBA, we use

a ResNet50 model, while AutoZOOM uses an InceptionV3. We impose an L0 per-

turbation limit of 1000, and a query threshold of 10000. The L0 limit we impose is

reasonable, as each time we perturb a pixel we actually modify all of its three channels,

therefore the 1000 limit stands for approximately 0.66% of the image pixels.

SR QA L0 L2

EvoBA(1,15) 100% 1242.4 247.3 6.09

EvoBA(1,20) 100% 1412.51 211.03 5.72

SimBA-CB 98.6% 1665 - 3.98

SimBA-DCT 97.8% 1283 - 3.06

AutoZOOM-BiLIN 100% 1695.27 - 6.06

Table 4. ImageNet results. AutoZOOM, SimBA-CB, and SimBA-DCT do not report the L0

metrics. However, we have discussed already why it is very likely that AutoZOOM perturbs

most of the pixels.

The median number of queries for EvoBA(1,15) is surprisingly low: 728.5. Its me-

dian L0 is 200, and its median L2 is 5.69. This shows once more how we met our goal to

minimise the query count and L0 perturbation, as the medians are significantly smaller

than the average values, showing how the distributions are biased towards low values.

20 Ilie et al.

Fig. 7. The first row contains original ImageNet samples, which are classified correctly by

ResNet-50. The second row contains adversarial examples created by EvoBA, and are labelled

with the corresponding ResNet-50 predictions. Furthermore, we also provide the L2 and L0 dis-

tances between the unperturbed and perturbed samples.

In comparison, the L2 mean and median are close, indicating that the good L2 results

we get are a consequence of our other constraints rather than an actual objective.

EvoBA(1,15) achieves the best average query metric among the given experiments.

Surprisingly, its L2 is almost equal to the one of AutoZOOM-BiLIN. EvoBA(1,15)

also achieves a 100% success rate, which is in line with AutoZOOM-BiLIN, and better

than SimBA’s results.

4.6 Qualitative results

In Figures 4 and 7, we provide samples of CIFAR-10, respectively of ImageNet per-

turbed images, together with their initial and perturbed labels. The perturbations are

almost imperceptible to the human eye, and they look mostly like regular noise. Con-

sidering the highly-biased nature of the L0 histogram in Figures 1 and 5 towards small

values, it is natural to expect well-crafted perturbations.

5 Using the tool

At https://github.com/andreiilie1/BBAttacks we provide a script run robustness checks.py

that runs EvoBA against custom classifiers and datasets.

The script only requires custom implementations for loading the data to be adver-

sarially perturbed. We provide an example of the implementation for the CIFAR-100

task. This is required to allow custom data loaders: unloading methods provided by

packages, local data dumps, external data sources (e.g Amazon’s S3), etc. In a future

EvoBA 21

implementation, we will provide options to run the attacks against all of these without

any custom implementation on the user side.

The script can be run as follows:

python run_robustness_checks.py

--model_path "models/cifar100vgg/cifar100vgg.py"

--model_class_name "cifar100vgg"

--task "cifar100"

--sample_size 100

The model path argument points to the Python inference logic. Model class name

specifies the class in the inference logic that has a black-box predict method. We provide

multiple examples of usage in our repository.

The tool will print attack statistics like:

EvoBA STATS (L0 attack)

Perturbed successfully 100/100 images

Average query count: 59.16

Average l0 distance: 72.83

Average l2 distance per pixel: 0.0010281872578653908

Median query count: 43.0

Median l0 dist: 54.0

Max query count: 214

Max l0 dist: 239

The tool will also save comprehensive attack logs, including json and npy objects

containing the indices of successfully perturbed images, the query counts used for each,

and the L0 and L2 distances. It will furthermore generate histograms of the L0 distances

and query counts required to successfully perturb images, such as the ones introduced

in our paper (Figures 5, 1, etc). The tool provides flags to enable or disable the L0 and

L2 attacks used for providing fast robustness benchmarks.

A sample collection of output artifacts will look like below:

evoba_l0_hist.png

evoba_l0_stats.json

simba_l2_hist.png

simba_l2_stats.json

simba_stats.json

evoba_l0_queries_hist.png

evoba_l0_stats.npy

simba_l2_queries_hist.png

simba_l2_stats.npy

22 Ilie et al.

We furthermore provide custom utils for logging all results, including original and

perturbed images, to MLflow (https://mlflow.org/). Using an MLflow server to then

visualise the results make it extremely convenient and easy to document results and has

been of tremendous help for us. This is only provided as custom scripts in our utils and

examples of usage are documented in the provided notebooks. We will add the MLflow

logging options to the tool in a future release.

To illustrate the utility of using MLflow as integrated part of these experiments, we

show the UI of some of our experiments in Appendix C.

6 Conclusion

We proposed EvoBA, EvoBA-E, and EvoBA-ET, three black-box adversarial attacks

based on evolution strategies which can serve as powerful baselines for black-box ad-

versarial attacks.

While all provide competitive query efficiency and small perturbation distances, we

focus on EvoBA, as it also provides significantly faster running times.

EvoBA achieves results in line with state-of-the-art approaches, such as AutoZOOM,

but is far less complex. Simple yet efficient methods, such as EvoBA, SimBA, DeepSearch,

and even CompleteRandom shed a light on the research potential of the black-box ad-

versarial field, outlining the inherent security issues in many machine learning applica-

tions.

We provide a robustness tool built around EvoBA, which also allows running SimBA,

at our repository. This allows for a quick robustness assessment of one’s computer vi-

sion system. As the running times are surprisingly small and EvoBA is very effective,

we propose that computer vision developers run our tool as part of their continuous

development of models, iterating on improving not only the accuracy but also the ro-

bustness of their solutions.

EvoBA could be easily extended for classification tasks in other fields, such as

natural language processing. One would have to come up with the right perturbation

scheme in our approach, but we leave this for future research.

Acknowledgement This work was partially supported by the Romanian Ministry of

Research and Innovation UEFISCDI 401PED/2020 and PN-III-P2-2.1-PTE-2019-0820,

and by the European Regional Development Fund, Competitiveness Operational Pro-

gram 2014-2020 through project IDBC (code SMIS 2014+: 121512).

Authorship contribution statement The first author, Andrei Ilie, has written most

material and conducted the experiments in this paper under the supervision of the sec-

ond and third authors, Marius Popescu and Alin Stefanescu. All three authors have

contributed significantly to the research introduced in this paper. All three authors ap-

proved the final form and took active part in the drafting and reviewing process. No

other people were involved in writing this paper or conducting the research behind it.

EvoBA 23

Data Availability Statement The datasets generated during and/or analysed during

the current study are well-known, standard datasets: CIFAR-10 and CIFAR-100 ([17],

available in standard TensorFlow datasets and at https://www.cs.toronto.edu/∼kriz/cifar.

html), ImageNet ([6], available at https://www.image-net.org/), and MNIST ([18], avail-

able in standard TensorFlow datasets and at https://yann.lecun.com/exdb/mnist/). The

weights and architectures of the models we used for benchmarking are available in ei-

ther the Tensorflow pretrained models collection, or at our repository: https://github.

com/andreiilie1/BBAttacks/tree/main/models.

Conflict of Interest Statement The authors have no relevant financial or non-financial

interests to disclose.

The authors have no conflicts of interest to declare that are relevant to the content

of this article.

All authors certify that they have no affiliations with or involvement in any organi-

zation or entity with any financial interest or non-financial interest in the subject matter

or materials discussed in this manuscript.

The authors have no financial or proprietary interests in any material discussed in

this article.

24 Ilie et al.

References

1. Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.J., Srivastava, M.B.: GenAt-

tack: Practical black-box attacks with gradient-free optimization. In: Proc. of the Genetic and

Evolutionary Comp. Conf. (GECCO’18). pp. 1111–1119 (2019)

2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security:

Circumventing defenses to adversarial examples. In: Proceedings of Int. Conf. on Machine

Learning (ICML’18). pp. 274–283 (2018)

3. Bafna, M., Murtagh, J., Vyas, N.: Thwarting adversarial examples: An l 0-robust sparse

fourier transform. Advances in Neural Information Processing Systems 31, 10075–10085

(2018)

4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE

Symp. on Security and Privacy (SP’17). pp. 39–57. IEEE (2017)

5. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: Zeroth order optimization based

black-box attacks to deep neural networks without training substitute models. In: Proc. of

the 10th ACM Workshop on Artificial Intelligence and Security. pp. 15–26 (2017)

6. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Li, F.: ImageNet: A large-scale hierarchical

image database. In: CVPR’09. pp. 248–255 (2009)

7. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to scalable

verification of deep networks. In: UAI. vol. 1, p. 3 (2018)

8. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno,

T., Song, D.: Robust physical-world attacks on deep learning visual classification. In: Proc.

of the IEEE Conf. on Computer Vision and Pattern Recognition. pp. 1625–1634 (2018)

9. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In:

International Conference on Learning Representations (2015)

10. Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: Deepsafe: A data-driven approach for

assessing robustness of neural networks. In: International symposium on automated technol-

ogy for verification and analysis. pp. 3–19. Springer (2018)

11. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.: Simple black-box adversarial

attacks. In: Proceedings of Int. Conf. on Machine Learning. pp. 2484–2493 (2019)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc.

of the IEEE Conf. on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

13. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.

In: International conference on computer aided verification. pp. 3–29. Springer (2017)

14. Ilie, A., Popescu, M., Stefanescu, A.: Robustness as inherent property of datapoints. AISafety

Workshop, IJCAI (2020)

15. Ilyas, A., Engstrom, L., Athalye, A., Lin, J.: Black-box adversarial attacks with limited

queries and information. In: Proceedings of Int. Conf. on Machine Learning (ICML’18).

pp. 2142–2151 (2018)

16. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: Black-box adversarial attacks with

bandits and priors. arXiv:1807.07978 (2018)

17. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, Uni-

versity of Toronto (2009)

18. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

(1998)

19. LeCun, Y., et al.: LeNet-5, convolutional neural networks. http://yann.lecun.com/exdb/lenet

20. Meunier, L., Atif, J., Teytaud, O.: Yet another but more efficient black-box adversarial attack:

tiling and evolution strategies. arXiv:1910.02244 (2019)

21. Moon, S., An, G., Song, H.O.: Parsimonious black-box adversarial attacks via efficient com-

binatorial optimization. In: International Conference on Machine Learning. pp. 4636–4645.

PMLR (2019)

EvoBA 25

22. Papernot, N., McDaniel, P., Goodfellow, I.: Transferability in machine learning: from phe-

nomena to black-box attacks using adversarial samples. arXiv:1605.07277 (2016)

23. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations

of deep learning in adversarial settings. In: IEEE European Symp. on Security and Privacy

(EuroS&P’16). pp. 372–387. IEEE (2016)

24. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should I trust you?”: Explaining the predictions

of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. pp.

1135–1144 (2016)

25. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with

provable guarantees. arXiv:1805.02242 (2018)

26. Sharif, M., Bauer, L., Reiter, M.K.: On the suitability of lp-norms for creating and prevent-

ing adversarial examples. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops. pp. 1605–1613 (2018)

27. Sharif, M., Bhagavatula, S., Bauer, L., Reiter, M.: Accessorize to a crime: Real and stealthy

attacks on state-of-the-art face recognition. In: Proc. of ACM SIGSAC Conf. on Computer

and Comm. Security (CCS’16). pp. 1528–1540 (2016)

28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-

nition. In: Proc. of Int. Conf.e on Learning Representations (ICLR’15) (2015)

29. Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.Y., Gao, Y.: Is robustness the cost of accuracy?

- a comprehensive study on the robustness of 18 deep image classification models. In: Proc.

of the European Conf. on Computer Vision (ECCV’18). pp. 631–648 (2018)

30. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-

tecture for computer vision. In: Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition. pp. 2818–2826 (2016)

31. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:

Intriguing properties of neural networks. arXiv:1312.6199 (2013)

32. Tu, C.C., Ting, P., Chen, P.Y., Liu, S., Zhang, H., Yi, J., Hsieh, C.J., Cheng, S.M.: Auto-

ZOOM: Autoencoder-based zeroth order optimization method for attacking black-box neural

networks. In: Proc. of the AAAI Conf. vol. 33, pp. 742–749 (2019)

33. Wiyatno, R.R., Xu, A., Dia, O., de Berker, A.: Adversarial examples in modern machine

learning: A review. arXiv:1911.05268 (2019)

34. Zhang, F., Chowdhury, S.P., Christakis, M.: Deepsearch: a simple and effective blackbox

attack for deep neural networks. In: Proceedings of the 28th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on the Foundations of Software

Engineering. pp. 800–812 (2020)

A Consistency of the results

As our attack is stochastic and relies heavily on a randomness generator, we did 10
independent runs of EvoBA on a sample of 200 CIFAR-10 images.

The EvoBA results from Table 5 show how robust our method is. The query stan-

dard deviation is only 4.87 (roughly 3% of the query average 178.29). Similarly, the

standard deviation is very small for EvoBA across all metrics.

The time required to perturb one CIFAR-10 sample was 1.91s on average, with a

standard deviation of 0.1s.

26 Ilie et al.

EvoBA Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean Std

SR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 0

L0 17.37 18.29 17.94 17.31 17.27 17.33 17.76 17.77 18.43 16.89 17.63 0.489

L2 1.81 1.87 1.86 1.83 1.83 1.82 1.81 1.84 1.87 1.79 1.83 0.027

Q 175.6 184.9 181.3 174.7 174.55 175.45 179.8 184.5 186.1 170.95 178.285 4.871

Table 5. Ten independent random runs of EvoBA.

B More baselines

We show how EvoBA compares with other well-known L2 black-box adversarial at-

tacks which work under the query-limited scenario. For this, we reuse the results from

[11], where the same model (ResNet-50) is targeted, and extend the metrics we pre-

sented in Table 4. The methods are QL-attack, introduced in [15], and Bandits-TD,

introduced in [16].

SR QA L0 L2

EvoBA(1,15) 100% 1242.4 247.3 6.09

EvoBA(1,20) 100% 1412.51 211.03 5.72

SimBA-CB 98.6% 1665 - 3.98

SimBA-DCT 97.8% 1283 - 3.06

QL-attack 85.4% 28174 - 8.27

Bandits-TD 80.5% 5251 - 5.00

AutoZOOM-BiLIN 100% 1695.27 - 6.06

Table 6. ImageNet results which show how EvoBA is comparable with L2 attacks from the L2

distance point of view, while being an L0 attack.

C MLflow

We show the UI of a subset of our experiments logged in MLflow in Figure 8 and 9.

EvoBA 27

Fig. 8. MLflow home page view of some of our experiments. It allows choosing between his-

toric Experiments (CIFAR-100 and ImageNet). Within each experiment, we can scroll through

individual attack runs and observe the metrics and parameters of each.

28 Ilie et al.

Fig. 9. MLflow view of one of our CIFAR-100 EvoBA experiments. Parameters used and result-

ing metrics are available, together with original and perturbed images in an interactive view.

