Skip to main content

A Novel Oversampling Technique for Imbalanced Learning Based on SMOTE and Genetic Algorithm

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

Abstract

Learning from imbalanced datasets is a challenge in machine learning, oversampling is an effective method to solve the problem of class imbalance, owing to its easy-to-go capability of achieving the balance by synthesizing new samples. However several problems still exist such as noise samples, selection of boundary samples and the diversity of synthetic samples. To solve these problems, this paper proposes a new improved oversampling method based on SMOTE and genetic algorithm (GA-SMOTE). The main steps of GA-SMOTE are as follows. Firstly GA-SMOTE uses genetic algorithm to find an optimal noise processing scheme. Then GA-SMOTE assigns different sampling weight to each sample and the sample closer to the boundary is assigned greater weight. Finally, GA-SMOTE divides raw dataset into multiple sub-clusters by K-means clustering and intra-cluster neighborhood triangular sampling method is used in each sub-cluster to improve the diversity of synthetic samples. A large number of experiments have proved that GA-SMOTE is superior to the other five comparison methods in dealing with imbalanced data classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, W.H., Huang, Z.Z., Li, S.D., Jia, Y.: Distribution-sensitive unbalanced data oversampling method for medical diagnosis. J. Med. Syst. 43(10), 39 (2019)

    Article  Google Scholar 

  2. Zheng, Z., Wu, X., Srihari, R.K.: Feature selection for text categorization on imbalanced data. Sigkdd Explor. 6(1), 80–89 (2004)

    Article  Google Scholar 

  3. Fan, W., Stolfo, S., Zhang, J., Chan, P.: Adacost: misclassification cost-sensitive boosting. In: International Conference on Machine Learning, pp. 97–105 (1999)

    Google Scholar 

  4. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)

    Article  Google Scholar 

  5. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.F.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  7. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  8. He, H., Bai, Y., Garcia, E. A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IJCNN, Hong Kong, China, pp. 1322–1328 (2008)

    Google Scholar 

  9. Barua, S., Islam, M.M., Yao, X., Murase, K.: MWMOTE- majority weighted minority oversampling technique for imbalanced data set learning. IEEE Trans. Knowl. Data Eng. 26(2), 405–425 (2014)

    Article  Google Scholar 

  10. Dong, Y., Wang, X.: A new over-sampling approach: random-SMOTE for learning from imbalanced data sets. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS (LNAI), vol. 7091, pp. 343–352. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25975-3_30

    Chapter  Google Scholar 

  11. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan press, Ann Arbor (1975)

    Google Scholar 

  12. Jiang, K., Lu, J., Xia, K.: A novel algorithm for imbalance data classification based on genetic algorithm improved SMOTE. Arab. J. Sci. Eng. 41(8), 3255–3266 (2016)

    Article  Google Scholar 

  13. Gu, Q., Wang, X.M., Wu, Z., Ning, B., Xin, C.S.: An improved SMOTE algorithm based on genetic algorithm for imbalanced data classification. J. Dig. Inf. Manag. 14(2), 92–103 (2016)

    Google Scholar 

  14. Tallo, T.E., Musdholifah, A.: The implementation of genetic algorithm in smote (synthetic minority oversampling technique) for handling imbalanced dataset problem. In 2018 4th International Conference on Science and Technology (ICST), pp. 1–4. IEEE (2018)

    Google Scholar 

  15. Lichman, M.: UCI Machine Learning Repository (2016). http://archive.ics.uci.edu/ml

  16. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least squares support vector machines. Int. J. Circ. Theory Appl. 27, 605–615 (2002)

    Article  Google Scholar 

  17. Fix, E., Hodges, J.L.: Discriminatory analysis-nonparametric discrimination: Consistency properties. Technical Report 4, USAF School of Aviation Medicine, Randolph Field 57(3) (1951)

    Google Scholar 

  18. Wang, W., Xie, Y.B., Yin, Q.: Decision tree improvement method for imbalanced data. J. Comput. Appl. 39(3), 623–628 (2019)

    Google Scholar 

  19. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data generation: the databoost-IM approach. ACM Sigkdd Explor. Newsl. 6(1), 30–39 (2004)

    Article  Google Scholar 

  20. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Proceedings of International Conference on Machine Learning, pp. 179–186 (1997)

    Google Scholar 

  21. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675 (1937)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, J. (2021). A Novel Oversampling Technique for Imbalanced Learning Based on SMOTE and Genetic Algorithm. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics