Skip to main content

Gated Channel Attention Network for Cataract Classification on AS-OCT Image

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

  • 1989 Accesses

Abstract

Nuclear cataract (NC) is the leading cause of blindness and vision impairment globally. Accurate NC classification is significant for clinical NC diagnosis. Anterior segment optical coherence tomography (AS-OCT) is a non-contact, high-resolution, objective imaging technique, which is widely used in diagnosing ophthalmic diseases. Clinical studies have shown that there is a significant correlation between the pixel density of the lens region on AS-OCT images and NC severity levels; however, automatic NC classification on AS-OCT images has not been seriously studied. Motivated by clinical research, this paper proposes a gated channel attention network (GCA-Net) to classify NC severity levels automatically. In the GCA-Net, we design a gated channel attention block by fusing the clinical priority knowledge, in which a gated layer is designed to filter out abundant features and a Softmax layer is used to build the weakly interacting for channels. We use a clinical AS-OCT image dataset to demonstrate the effectiveness of our GCA-Net. The results showed that the proposed GCA-Net achieves 94.3% in accuracy and outperformed strong baselines and state-of-the-art attention-based networks.

Z. Xiao and X. Zhang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caixinha, M., Amaro, J., Santos, M., Perdigão, F., Gomes, M., Santos, J.: In-Vivo automatic nuclear cataract detection and classification in an animal model by ultrasounds. IEEE Trans. Biomed. Eng. 63(11), 2326–2335 (2016)

    Article  Google Scholar 

  2. Cao, L., Li, H., Zhang, Y., Zhang, L., Xu, L.: Hierarchical method for cataract grading based on retinal images using improved Haar wavelet. Inf. Fusion 53, 196–208 (2020)

    Article  Google Scholar 

  3. Chen, D., Li, Z., Huang, J., Yu, L., Liu, S., Zhao, Y.E.: Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system. Br. J. Ophthalmol. 103(8), 1048–1053 (2019)

    Article  Google Scholar 

  4. Chylack, L.T., et al.: The lens opacities classification system iii. Arch. Ophthalmol. 111(6), 831–836 (1993)

    Article  Google Scholar 

  5. Gali, H.E., Sella, R., Afshari, N.A.: Cataract grading systems: a review of past and present. Curr. Opin. Ophthalmol. 30(1), 13–18 (2019)

    Article  Google Scholar 

  6. Gao, X., Lin, S., Wong, T.Y.: Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans. Biomed. Eng. 62(11), 2693–2701 (2015)

    Article  Google Scholar 

  7. Hao, H., et al.: Open-Appositional-Synechial anterior chamber angle classification in AS-OCT sequences. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 715–724. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_69

    Chapter  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-excite: exploiting feature context in convolutional neural networks. arXiv preprint arXiv:1810.12348 (2018)

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Kobayashi, T.: Global feature guided local pooling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3365–3374 (2019)

    Google Scholar 

  12. Li, H., Lim, J.H., Liu, J., Wong, T.Y.: Towards automatic grading of nuclear cataract. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4961–4964. IEEE (2007)

    Google Scholar 

  13. Long, E., et al.: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1(2), 1–8 (2017)

    Article  Google Scholar 

  14. Makhotkina, N.Y., Berendschot, T.T., van den Biggelaar, F.J., Weik, A.R., Nuijts, R.M.: Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol. 96(4), 356–363 (2018)

    Article  Google Scholar 

  15. Ozgokce, M., et al.: A comparative evaluation of cataract classifications based on shear-wave elastography and B-mode ultrasound findings. J. Ultrasound 22(4), 447–452 (2019)

    Article  Google Scholar 

  16. Panthier, C., Burgos, J., Rouger, H., Saad, A., Gatinel, D.: New objective lens density quantification method using swept-source optical coherence tomography technology: Comparison with existing methods. J. Cataract Refract. Surg. 43(12), 1575–1581 (2017)

    Article  Google Scholar 

  17. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)

  18. Qilong, W., Banggu, W., Pengfei, Z., Peihua, L., Wangmeng, Z., Qinghua, H.: ECA-Net: Efficient channel attention for deep convolutional neural networks (2020)

    Google Scholar 

  19. Qin, Z., Zhang, P., Wu, F., Li, X.: Fcanet: frequency channel attention networks. arXiv preprint arXiv:2012.11879 (2020)

  20. Wang, W., et al.: Objective quantification of lens nuclear opacities using swept-source anterior segment optical coherence tomography. Br. J. Ophthalmol. (2021)

    Google Scholar 

  21. Wong, A.L., et al.: Quantitative assessment of lens opacities with anterior segment optical coherence tomography. Br. J. Ophthalmol. 93(1), 61–65 (2009)

    Article  Google Scholar 

  22. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  23. Xu, X., Zhang, L., Li, J., Guan, Y., Zhang, L.: A hybrid global-local representation CNN model for automatic cataract grading. IEEE J. Biomed. Health Inform. 24(2), 556–567 (2019)

    Article  Google Scholar 

  24. Xu, Y., Duan, L., Wong, D.W.K., Wong, T.Y., Liu, J.: Semantic reconstruction-based nuclear cataract grading from slit-lamp lens images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 458–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_53

    Chapter  Google Scholar 

  25. Xu, Y., et al.: Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 468–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_58

    Chapter  Google Scholar 

  26. Zhang, X., Fang, J., Hu, Y., Xu, Y., Higashita, R., Liu, J.: Machine learning for cataract classification and grading on ophthalmic imaging modalities: a survey. arXiv preprint arXiv:2012.04830 (2020)

  27. Zhang, X., et al.: A novel deep learning method for nuclear cataract classification based on anterior segment optical coherence tomography images. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 662–668. IEEE (2020)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by Guangdong Provincial Department of Education (2020ZDZX3043, SJJG202002), Guangdong Provincial Key Laboratory (2020B121201001), Shenzhen Natural Science Fund (JCYJ20200109140820699 and the Stable Support Plan Program 20200925174052004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Z. et al. (2021). Gated Channel Attention Network for Cataract Classification on AS-OCT Image. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics