Abstract
Nuclear cataract (NC) is the leading cause of blindness and vision impairment globally. Accurate NC classification is significant for clinical NC diagnosis. Anterior segment optical coherence tomography (AS-OCT) is a non-contact, high-resolution, objective imaging technique, which is widely used in diagnosing ophthalmic diseases. Clinical studies have shown that there is a significant correlation between the pixel density of the lens region on AS-OCT images and NC severity levels; however, automatic NC classification on AS-OCT images has not been seriously studied. Motivated by clinical research, this paper proposes a gated channel attention network (GCA-Net) to classify NC severity levels automatically. In the GCA-Net, we design a gated channel attention block by fusing the clinical priority knowledge, in which a gated layer is designed to filter out abundant features and a Softmax layer is used to build the weakly interacting for channels. We use a clinical AS-OCT image dataset to demonstrate the effectiveness of our GCA-Net. The results showed that the proposed GCA-Net achieves 94.3% in accuracy and outperformed strong baselines and state-of-the-art attention-based networks.
Z. Xiao and X. Zhang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caixinha, M., Amaro, J., Santos, M., Perdigão, F., Gomes, M., Santos, J.: In-Vivo automatic nuclear cataract detection and classification in an animal model by ultrasounds. IEEE Trans. Biomed. Eng. 63(11), 2326–2335 (2016)
Cao, L., Li, H., Zhang, Y., Zhang, L., Xu, L.: Hierarchical method for cataract grading based on retinal images using improved Haar wavelet. Inf. Fusion 53, 196–208 (2020)
Chen, D., Li, Z., Huang, J., Yu, L., Liu, S., Zhao, Y.E.: Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system. Br. J. Ophthalmol. 103(8), 1048–1053 (2019)
Chylack, L.T., et al.: The lens opacities classification system iii. Arch. Ophthalmol. 111(6), 831–836 (1993)
Gali, H.E., Sella, R., Afshari, N.A.: Cataract grading systems: a review of past and present. Curr. Opin. Ophthalmol. 30(1), 13–18 (2019)
Gao, X., Lin, S., Wong, T.Y.: Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans. Biomed. Eng. 62(11), 2693–2701 (2015)
Hao, H., et al.: Open-Appositional-Synechial anterior chamber angle classification in AS-OCT sequences. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 715–724. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_69
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-excite: exploiting feature context in convolutional neural networks. arXiv preprint arXiv:1810.12348 (2018)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Kobayashi, T.: Global feature guided local pooling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3365–3374 (2019)
Li, H., Lim, J.H., Liu, J., Wong, T.Y.: Towards automatic grading of nuclear cataract. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4961–4964. IEEE (2007)
Long, E., et al.: An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1(2), 1–8 (2017)
Makhotkina, N.Y., Berendschot, T.T., van den Biggelaar, F.J., Weik, A.R., Nuijts, R.M.: Comparability of subjective and objective measurements of nuclear density in cataract patients. Acta Ophthalmol. 96(4), 356–363 (2018)
Ozgokce, M., et al.: A comparative evaluation of cataract classifications based on shear-wave elastography and B-mode ultrasound findings. J. Ultrasound 22(4), 447–452 (2019)
Panthier, C., Burgos, J., Rouger, H., Saad, A., Gatinel, D.: New objective lens density quantification method using swept-source optical coherence tomography technology: Comparison with existing methods. J. Cataract Refract. Surg. 43(12), 1575–1581 (2017)
Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: Bam: bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)
Qilong, W., Banggu, W., Pengfei, Z., Peihua, L., Wangmeng, Z., Qinghua, H.: ECA-Net: Efficient channel attention for deep convolutional neural networks (2020)
Qin, Z., Zhang, P., Wu, F., Li, X.: Fcanet: frequency channel attention networks. arXiv preprint arXiv:2012.11879 (2020)
Wang, W., et al.: Objective quantification of lens nuclear opacities using swept-source anterior segment optical coherence tomography. Br. J. Ophthalmol. (2021)
Wong, A.L., et al.: Quantitative assessment of lens opacities with anterior segment optical coherence tomography. Br. J. Ophthalmol. 93(1), 61–65 (2009)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Xu, X., Zhang, L., Li, J., Guan, Y., Zhang, L.: A hybrid global-local representation CNN model for automatic cataract grading. IEEE J. Biomed. Health Inform. 24(2), 556–567 (2019)
Xu, Y., Duan, L., Wong, D.W.K., Wong, T.Y., Liu, J.: Semantic reconstruction-based nuclear cataract grading from slit-lamp lens images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 458–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_53
Xu, Y., et al.: Automatic grading of nuclear cataracts from slit-lamp lens images using group sparsity regression. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 468–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_58
Zhang, X., Fang, J., Hu, Y., Xu, Y., Higashita, R., Liu, J.: Machine learning for cataract classification and grading on ophthalmic imaging modalities: a survey. arXiv preprint arXiv:2012.04830 (2020)
Zhang, X., et al.: A novel deep learning method for nuclear cataract classification based on anterior segment optical coherence tomography images. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 662–668. IEEE (2020)
Acknowledgment
This work was supported in part by Guangdong Provincial Department of Education (2020ZDZX3043, SJJG202002), Guangdong Provincial Key Laboratory (2020B121201001), Shenzhen Natural Science Fund (JCYJ20200109140820699 and the Stable Support Plan Program 20200925174052004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Xiao, Z. et al. (2021). Gated Channel Attention Network for Cataract Classification on AS-OCT Image. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-92238-2_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92237-5
Online ISBN: 978-3-030-92238-2
eBook Packages: Computer ScienceComputer Science (R0)