Skip to main content

Enhancing Dermoscopic Features Classification in Images Using Invariant Dataset Augmentation and Convolutional Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

The Invariant Dataset Augmentation (IDA) method shows its advantages in image classification using CNN networks. In the paper, several pretrained neural networks have been used e.g. Inception-ResNet-v2, VGG19, Xception, etc., trained on the PH2 and Derm7pt dermoscopic datasets in different scenarios. One of them relies on the Invariant Dataset Augmentation not only for training and but also for validation and testing. That original research and method show that the classification characteristics e.g. values of the weighted accuracy and sensitivity (true positive rate), and precision (positive predictive rate) tests F1 and MCC are much higher. That general approach provides better results with higher classification results e.g. sensitivity and precision (positive predictive rate) and can be used in other disciplines. In the paper, the results are shown in the research of the assessment of the skin lesions on two distinct dermoscopic datasets, PH2 and Derm7pt, on the classification of the presence or its absence of the feature called blue-white veil within the lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Cancer Information System (ECIS). https://ecis.jrc.ec.europa.eu. Accessed 14 Jul 2021

  2. ACS - American Cancer Society. https://www.cancer.org/research/cancer-facts-statistics.html. Accessed 14 Jul 2021

  3. Milczarski, P., Beczkowski, M., Borowski, N.: Blue-white veil classification of dermoscopy images using convolutional neural networks and invariant dataset augmentation. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 226, pp. 421–432. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_34

    Chapter  Google Scholar 

  4. Beczkowski, M., Borowski, N., Milczarski, P.: Classification of dermatological asymmetry of the skin lesions using pretrained convolutional neural networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2021. LNCS (LNAI), vol. 12855, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87897-9_1

    Chapter  Google Scholar 

  5. Mendoncca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2 - a dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 5437–5440 (2013)

    Google Scholar 

  6. Argenziano, G., Soyer, H.P., De Giorgi, V., et al.: Interactive Atlas of Dermoscopy. EDRA Medical Publishing & New Media, Milan (2002)

    Google Scholar 

  7. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inform. 23(2), 538–546 (2019)

    Article  Google Scholar 

  8. Soyer, H.P., Argenziano, G., Zalaudek, I., et al.: Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology 208(1), 27–31 (2004)

    Article  Google Scholar 

  9. Argenziano, G., Soyer, H.P., et al.: Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J. Am. Acad. Dermatol. 48(9), 679–693 (2003)

    Article  Google Scholar 

  10. Milczarski, P.: Symmetry of hue distribution in the images. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 48–61. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_5

    Chapter  Google Scholar 

  11. Argenziano, G., Fabbrocini, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)

    Article  Google Scholar 

  12. Nachbar, F., Stolz, W., Merkle, T., et al.: The ABCD rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)

    Article  Google Scholar 

  13. Milczarski, P., Stawska, Z., Maslanka, P.: Skin lesions dermatological shape asymmetry measures. In: Proceedings of the IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS, pp. 1056–1062 (2017)

    Google Scholar 

  14. Menzies, S.W., Zalaudek, I.: Why perform dermoscopy? The evidence for its role in the routine management of pigmented skin lesions. Arch. Dermatol. 142, 1211–1222 (2006)

    Article  Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Conference Track Proceedings of 3rd International Conference on Learning Representations (ICRL), San Diego, USA, (2015)

    Google Scholar 

  16. Was, L., Milczarski, P., Stawska, Z., Wiak, S., Maslanka, P., Kot, M.: Verification of results in the acquiring knowledge process based on IBL methodology. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 750–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_69

    Chapter  Google Scholar 

  17. Celebi, M.E., Kingravi, H.A., Uddin, B.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)

    Article  Google Scholar 

  18. Was, L., et al.: Analysis of dermatoses using segmentation and color hue in reference to skin lesions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 677–689. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_61

    Chapter  Google Scholar 

  19. Milczarski, P., Stawska, Z., Was, L., Wiak, S., Kot, M.: New dermatological asymmetry measure of skin lesions. Int. J. Neural Netw. Adv. Appl. 4, 32–38 (2017)

    Google Scholar 

  20. Milczarski, P., Stawska, Z.: Classification of skin lesions shape asymmetry using machine learning methods. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp. 1274–1286. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44038-1_116

    Chapter  Google Scholar 

  21. The International Skin Imaging Collaboration: Melanoma Project. http://isdis.net/isic-project/. Accessed 14 Jul 2021

  22. Esteva, A., Kuprel, B., Novoa, R.A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  23. He, K., Zhang, X., Ren S. and Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  24. Madooei, A., Drew, M.S., Sadeghi, M., Atkins, M.S.: Automatic detection of blue-white veil by discrete colour matching in dermoscopy images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 453–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_57

    Chapter  Google Scholar 

  25. Jaworek-Korjakowska, J., Kłeczek, P., Grzegorzek, M., Shirahama, K.: Automatic detection of blue-whitish veil as the primary dermoscopic feature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI and LNB), vol. 10245, pp. 649–657. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_58

    Chapter  Google Scholar 

  26. Celebi, M.E., et al.: Automatic detection of blue-white veil and related structures in dermoscopy images. CMIG 32(8), 670–677 (2008)

    Google Scholar 

  27. Di Leo, G., Fabbrocini, G., Paolillo, A., Rescigno, O., Sommella, P.: Toward an automatic diagnosis system for skin lesions: estimation of blue-whitish veil and regression structures. In: International Multi-Conference on Systems, Signals & Devices, SSD 2009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Milczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milczarski, P., Beczkowski, M., Borowski, N. (2021). Enhancing Dermoscopic Features Classification in Images Using Invariant Dataset Augmentation and Convolutional Neural Networks. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics