Skip to main content

Constrained Generative Model for EEG Signals Generation

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

Abstract

Electroencephalogram (EEG) is one of the most promising modalities in the field of Brain-Computer Interfaces (BCIs) due to its high time-domain resolutions and abundant physiological information. Quality of EEG signal analysis depends on the number of human subjects. However, due to lengthy preparation time and experiments, it is difficult to obtain sufficient human subjects for experiments. One of possible approaches is to employ generative model for EEG signal generation. Unfortunately, existing generative frameworks face issues of insufficient diversity and poor similarity, which may result in low quality of generative EEG. To address the issues above, we propose R\(^{2}\)WaveGAN, a WaveGAN based model with constraints using two correlated regularizers. In details, inspired by WaveGAN that can process time-series signals, we adopt it to fit EEG dataset and then integrate the spectral regularizer and anti-collapse regularizer to minimize the issues of insufficient diversity and poor similarity, respectively, so as to improve generalization of R\(^{2}\)WaveGAN. The proposed model is evaluated on one publicly available dataset - Bi2015a. An ablation study is performed to validate the effectiveness of both regularizers. Compared to the state-of-the-art models, R\(^{2}\)WaveGAN can provide better results in terms of evaluation metrics.

T. Guo and L. Zhang—Contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, F., Ren, H.: A linear and nonlinear auto-regressive model and its application in modeling and forecasting. In: Dongnan Daxue Xuebao (Ziran Kexue Ban)/J. Southeast Univ. (Nat. Sci. Ed.) 43(3), 509–514 (2013)

    Google Scholar 

  2. Diederik, P.K., Welling, M.: Auto-encodingVariational Bayes. In: 2nd International Conference on Learning Representations, Banff, Canada, pp. 1–14 (2014)

    Google Scholar 

  3. Goodfellow, I.J., et al.: Generative adversarial nets. In: 28th Annual Conference on Neural Information Processing Systems, Montréal, Canada, pp. 2672–2680. MIT Press (2014)

    Google Scholar 

  4. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: 24th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 10236–10245. MIT Press (2010)

    Google Scholar 

  5. Yu, L.T., Zhang, W.N., Wang, J., Yong, Y.: SeqGAN: sequence generative adversarial nets with policy gradients. In: 31st Conference on Artificial Intelligence, San Francisco, USA, pp. 2852–2858. AAAI Press (2017)

    Google Scholar 

  6. Abdelfattah, S., Abdelrahman, M., Wang, M.: Augmenting the size of EEG datasets using generative adversarial networks. In: 31st International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, pp. 1–6. IEEE Press (2018)

    Google Scholar 

  7. Luo, Y., Lu, B.: EEG data augmentation for emotion recognition using a conditional Wasserstein GAN. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, USA, pp. 2535–2538. IEEE Press (2018)

    Google Scholar 

  8. Panwar, S., Rad, P., Jung, T., Huang, Y.: Modeling EEG data distribution with a Wasserstein Generative Adversarial Network to predict RSVP Events. IEEE Trans. Neural Syst. Rehabil. Eng. 1(1), 99 (2020)

    Google Scholar 

  9. Roy, S., Dora, D., Mccreadie, K.: MIEEG-GAN: generating artificial motor imagery electroencephalography signals. In: 33th International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, pp. 1–8. IEEE Press (2020)

    Google Scholar 

  10. Donahue, C., Mcauley, J., Puckette, M.: Adversarial audio synthesis. In: 6th International Conference on Learning Representations, Vancouver, Canada, pp. 1–8. OpenReview.net Press (2018)

    Google Scholar 

  11. Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: CNN based generative deep neural networks are failing to reproduce spectral distributions. In: 38th Computer Vision and Pattern Recognition, pp. 1–10. IEEE Press (2020)

    Google Scholar 

  12. Li, K., Zhang, Y., Li, K., Fu, Y.: Adversarial feature hallucination networks for few-shot learning. In: 38th Computer Vision and Pattern Recognition, pp. 1–8. IEEE Press (2020)

    Google Scholar 

  13. Donahue, C., Mcauley, J., Puckette, M.: Adversarial audio synthesis. In: International Conference on Learning Representations, Vancouver, Canada, pp. 1–16. OpenReview.net Press (2018)

    Google Scholar 

  14. Korczowski, L., Cederhout, M., Andreev, A., Cattan, G., Congedo, M.: Brain Invaders calibration-less P300-based BCI with modulation of flash duration Dataset (bi2015a) (2019). https://hal.archives-ouvertes.fr/hal-02172347. Accessed 3 July 2019

  15. Luo, P., Wang, X., Shao, W., Peng, Z.: Understanding regularization in batch normalization. In: 7th International Conference on Learning Representations, New Orleans, USA, pp. 1–8 (2019)

    Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  17. Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 218–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_14

    Chapter  Google Scholar 

  18. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: 38th Computer Vision and Pattern Recognition, Seattle, USA, pp. 1–8. IEEE Press (2020)

    Google Scholar 

  19. Oudre, L., Jakubowicz, J., Bianchi, P., Simon, C.: Classification of periodic activities using the Wasserstein distance. IEEE Trans. Biomed. Eng. 1610–1619 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likun Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, T. et al. (2021). Constrained Generative Model for EEG Signals Generation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics