Skip to main content

Learning to Coordinate via Multiple Graph Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

Abstract

The collaboration between agents has gradually become an important topic in multi-agent systems. The key is how to efficiently solve the credit assignment problems. This paper introduces MGAN for collaborative multi-agent reinforcement learning, a new algorithm that combines graph convolutional networks and value-decomposition methods. MGAN learns the representation of agents from different perspectives through multiple graph networks, and realizes the proper allocation of attention between all agents. We show the amazing ability of the graph network in representation learning by visualizing the output of the graph network, and therefore improve interpretability for the actions of each agent in the multi-agent system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Böhmer, W., Kurin, V., Whiteson, S.: Deep coordination graphs. arXiv arXiv:1910.00091 (2020)

  2. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  3. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016)

    Google Scholar 

  4. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: AAAI (2018)

    Google Scholar 

  5. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. arXiv arXiv:1609.09106 (2017)

  6. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)

    Google Scholar 

  7. Hausknecht, M.J., Stone, P.: Deep recurrent Q-learning for partially observable MDPs. In: AAAI Fall Symposia (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., Mordatch, I.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: NIPS (2017)

    Google Scholar 

  10. Maaten, L.V.D., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  11. Oliehoek, F.A., Amato, C.: A Concise Introduction to Decentralized POMDPs. SpringerBriefs in Intelligent Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28929-8

  12. Peng, P., et al.: Multiagent Bidirectionally-Coordinated Nets: emergence of human-level coordination in learning to play StarCraft combat games. arXiv: Artificial Intelligence (2017)

  13. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  14. Rashid, T., Samvelyan, M., Witt, C.S., Farquhar, G., Foerster, J.N., Whiteson, S.: QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv arXiv:1803.11485 (2018)

  15. Samvelyan, M., et al.: The StarCraft multi-agent challenge. arXiv arXiv:1902.04043 (2019)

  16. Son, K., Kim, D., Kang, W., Hostallero, D., Yi, Y.: QTRAN: learning to factorize with transformation for cooperative multi-agent reinforcement learning. arXiv arXiv:1905.05408 (2019)

  17. Sukhbaatar, S., Szlam, A., Fergus, R.: Learning multiagent communication with backpropagation. In: NIPS (2016)

    Google Scholar 

  18. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv arXiv:1706.05296 (2018)

  19. Sutton, R., Barto, A.: Reinforcement learning: an introduction. IEEE Trans. Neural Netw. 16, 285–286 (2005)

    Article  Google Scholar 

  20. Tampuu, A., et al.: Multiagent cooperation and competition with deep reinforcement learning. PLOS ONE 12, e0172395 (2017)

    Article  Google Scholar 

  21. Thekumparampil, K.K., Wang, C., Oh, S., Li, L.: Attention-based graph neural network for semi-supervised learning. arXiv arXiv:1803.03735 (2018)

  22. Vaswani, A., et al.: Attention is all you need. arXiv arXiv:1706.03762 (2017)

  23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. arXiv arXiv:1710.10903 (2018)

  24. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv arXiv:1810.00826 (2019)

  25. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: ICML (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Zhang, B., Bai, Y., Li, D., Fan, G. (2021). Learning to Coordinate via Multiple Graph Neural Networks. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics