Abstract
Forecasting multiple co-occurring events of different types (a.k.a. multi-event) from open-source social media is extremely beneficial for decision makers seeking to avoid, control related social unrest and risks. Most existing work either fails to jointly model the entity-relation and semantic dependence among multiple events, or has limited long-term or inconsecutive forecasting performances. In order to address the above limitations, we design a Dilated Graph Convolutional Networks (DGCN-rs) jointly modelling relation and semantic information for multi-event forecasting. We construct a temporal event graph (TEG) for entity-relation dependence and a semantic context graph (SCG) for semantic dependence to capture useful historical clues. To obtain better graph embedding, we utilize GCN to aggregate the neighborhoods of TEG and SCG. Considering the long-term and inconsecutive dependence of social events over time, we apply dilated casual convolutional network to automatically capture such temporal dependence by stacked the layers with increasing dilated factors. We compare the proposed model DGCN-rs with state-of-the-art methods on five-country datasets. The results exhibit better performance than other models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)
Deng, S., Rangwala, H., Ning, Y.: Learning dynamic context graphs for predicting social events. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1007–1016 (2019)
Deng, S., Rangwala, H., Ning, Y.: Dynamic knowledge graph based multi-event forecasting. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1585–1595 (2020)
Gao, Y., Zhao, L.: Incomplete label multi-task ordinal regression for spatial event scale forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Gao, Y., Zhao, L., Wu, L., Ye, Y., Xiong, H., Yang, C.: Incomplete label multi-task deep learning for spatio-temporal event subtype forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3638–3646 (2019)
Gupta, P., Pagliardini, M., Jaggi, M.: Better word embeddings by disentangling contextual n-gram information. In: NAACL-HLT (1), pp. 933–939. Association for Computational Linguistics (2019)
Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs (2019)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016)
Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting (2017)
Luo, W., et al.: Dynamic heterogeneous graph neural network for real-time event prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3213–3223 (2020)
Menon, A.K., Rawat, A.S., Reddi, S., Kumar, S.: Multilabel reductions: what is my loss optimising? (2019)
Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)
Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events extracted from twitter posts. In: Yang, S.J., Greenberg, A.M., Endsley, M. (eds.) SBP 2012. LNCS, vol. 7227, pp. 231–238. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29047-3_28
Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial- temporal graph modeling (2019)
Song, X., Wang, H., Zeng, K., Liu, Y., Zhou, B.: KatGCN: knowledge-aware attention based temporal graph convolutional network for multi-event prediction. In: SEKE, pp. 417–422 (2021)
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting (2017)
Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.Y.: Gaan: gated attention networks for learning on large and spatiotemporal graphs (2018)
Zhao, L., Sun, Q., Ye, J., Chen, F., Lu, C.T., Ramakrishnan, N.: Multi-task learning for spatio-temporal event forecasting. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1503–1512 (2015)
Acknowledgement
This work was supported by the National Key Research and Development Program of China No. 2018YFC0831703.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Song, X., Wang, H., Zhou, B. (2021). DGCN-rs: A Dilated Graph Convolutional Networks Jointly Modelling Relation and Semantic for Multi-event Forecasting. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-92238-2_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92237-5
Online ISBN: 978-3-030-92238-2
eBook Packages: Computer ScienceComputer Science (R0)