Skip to main content

A Reinforcement Learning Approach for Abductive Natural Language Generation

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13110))

Included in the following conference series:

  • 1624 Accesses

Abstract

Teaching deep learning models commonsense knowledge is a crucial yet challenging step towards building human-level artificial intelligence. Abductive Commonsense Reasoning (\(\mathcal {ART}\)) is a benchmark that investigates model’s ability on inferencing the most plausible explanation within the given context, which requires model using commonsense knowledge about the world. \(\mathcal {ART}\) consists of two datasets, \(\alpha \)NLG and \(\alpha \)NLI, that challenge models from generative and discriminative settings respectively. Despite the fact that both of the datasets investigate the same ability, existing work solves them independently. In this work, we address \(\alpha \)NLG in a teacher-student setting by getting help from another model with adequate commonsense knowledge fully-trained on \(\alpha \)NLI. We fulfill this intuition by representing the desired optimal generation model as an Energy-Based Model and training it using a reinforcement learning algorithm. Experiment results showed that our model achieve state-of-the-art results on both automatic and human evaluation metrics, which have demonstrated the effectiveness and feasibility of our model (Code available in https://github.com/Huanghongru/commonsense-generation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use \(a(\boldsymbol{x})\) for short in the rest of the paper.

  2. 2.

    We use \(\phi (\boldsymbol{x})\) for short in the rest of the paper.

  3. 3.

    https://leaderboard.allenai.org/anli/submissions/public.

References

  1. Bahdanau, D., et al.: An actor-critic algorithm for sequence prediction. In: 5th International Conference on Learning Representations (Conference Track Proceedings), ICLR 2017, Toulon, France, 24–26 April 2017. OpenReview.net (2017). https://openreview.net/forum?id=SJDaqqveg

  2. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor, Michigan, pp. 65–72. Association for Computational Linguistics (June 2005). https://www.aclweb.org/anthology/W05-0909

  3. Bhagavatula, C., et al.: Abductive commonsense reasoning. OpenReview.net (2020). https://openreview.net/forum?id=Byg1v1HKDB

  4. Deng, Y., Bakhtin, A., Ott, M., Szlam, A., Ranzato, M.: Residual energy-based models for text generation. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=B1l4SgHKDH

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–4186. Association for Computational Linguistics (June 2019). https://doi.org/10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423

  6. He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: decoding-enhanced BERT with disentangled attention. CoRR abs/2006.03654 (2020). arXiv arXiv:2006.03654

  7. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002). https://doi.org/10.1162/089976602760128018

  8. Ji, H., Ke, P., Huang, S., Wei, F., Zhu, X., Huang, M.: Language generation with multi-hop reasoning on commonsense knowledge graph. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 725–736. Association for Computational Linguistics (November 2020). https://doi.org/10.18653/v1/2020.emnlp-main.54. https://www.aclweb.org/anthology/2020.emnlp-main.54

  9. Khalifa, M., Elsahar, H., Dymetman, M.: A distributional approach to controlled text generation. CoRR abs/2012.11635 (2020). arXiv arXiv:2012.11635

  10. Kim, T., Bengio, Y.: Deep directed generative models with energy-based probability estimation. CoRR abs/1606.03439 (2016). arXiv arXiv:1606.03439

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations (Conference Track Proceedings), ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015). arXiv arXiv:1412.6980

  12. LeCun, Y., Chopra, S., Hadsell, R., Huang, F.J., et al.: A tutorial on energy-based learning. In: Predicting Structured Data. MIT Press (2006)

    Google Scholar 

  13. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880. Association for Computational Linguistics (July 2020). https://doi.org/10.18653/v1/2020.acl-main.703. https://www.aclweb.org/anthology/2020.acl-main.703

  14. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text Summarization Branches Out, Barcelona, Spain, pp. 74–81. Association for Computational Linguistics (July 2004). https://www.aclweb.org/anthology/W04-1013

  15. Liu, Y., et al: RoBERTa: a robustly optimized BERT pretraining approach. CoRR abs/1907.11692 (2019). arXiv arXiv:1907.11692

  16. Luketina, J., et al.: A survey of reinforcement learning informed by natural language. In: Kraus, S. (ed.) Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 6309–6317. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/880

  17. Moore, C.: The development of commonsense psychology (2006). https://doi.org/10.4324/9780203843246

  18. Owen, A.B.: Monte Carlo theory, methods and examples (2013). https://statweb.stanford.edu/~owen/mc/Ch-var-is.pdf

  19. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA, pp. 311–318. Association for Computational Linguistics (July 2002). https://doi.org/10.3115/1073083.1073135. https://www.aclweb.org/anthology/P02-1040

  20. Parshakova, T., Andreoli, J.M., Dymetman, M.: Global autoregressive models for data-efficient sequence learning. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong, China, pp. 900–909. Association for Computational Linguistics (November 2019). https://doi.org/10.18653/v1/K19-1084. https://www.aclweb.org/anthology/K19-1084

  21. Qin, L., et al.: Back to the future: unsupervised backprop-based decoding for counterfactual and abductive commonsense reasoning. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 794–805. Association for Computational Linguistics (November 2020). https://doi.org/10.18653/v1/2020.emnlp-main.58. https://www.aclweb.org/anthology/2020.emnlp-main.58

  22. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2018). https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

  23. Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with recurrent neural networks. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations (Conference Track Proceedings), ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016 (2016). arXiv arXiv:1511.06732

  24. Sap, M., et al.: ATOMIC: an atlas of machine commonsense for if-then reasoning. In: The 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, The 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 3027–3035. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33013027

  25. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge, pp. 4444–4451. AAAI Press (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

  26. Tambwekar, P., Dhuliawala, M., Martin, L.J., Mehta, A., Harrison, B., Riedl, M.O.: Controllable neural story plot generation via reinforcement learning (2019)

    Google Scholar 

  27. Tincoff, R., Jusczyk, P.W.: Some beginnings of word comprehension in 6-month-olds. Psycholol. Sci. 10(2), 172–175 (1999). https://doi.org/10.1111/1467-9280.00127

  28. Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 4566–4575. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7299087

  29. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (1992). https://doi.org/10.1007/BF00992696

  30. Yang, Z., Xie, Y., Wang, Z.: A theoretical analysis of deep q-learning. CoRR abs/1901.00137 (2019). arXiv arXiv:1901.00137

  31. Zhu, Y., Pang, L., Lan, Y., Cheng, X.: L2r\({^2}\): leveraging ranking for abductive reasoning, pp. 1961–1964. ACM (2020). https://doi.org/10.1145/3397271.3401332

  32. Ziegler, D.M., et al.: Fine-tuning language models from human preferences. CoRR abs/1909.08593 (2019). arXiv arXiv:1909.08593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongru Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H. (2021). A Reinforcement Learning Approach for Abductive Natural Language Generation. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92238-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92237-5

  • Online ISBN: 978-3-030-92238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics