Skip to main content

Kernelized Transfer Feature Learning on Manifolds

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13109))

Included in the following conference series:

Abstract

In the past few years in computer vision and machine learning, transfer learning has become an emerging research for leveraging richly labeled data in the source domain to construct a robust and accurate classifier for the target domain. Recent work on transfer learning has focused on learning shared feature representations by minimizing marginal and conditional distributions between domains for linear data sets only. However, they produce poor results if they deal with non-linear data sets. Therefore, in this paper, we put forward a novel framework called Kernelized Transfer Feature Learning on Manifold (KTFLM). KTFLM aims to align statistical differences and preserve the intrinsic geometric structure between the labeled source domain data and unlabeled target domain data. More specifically, we consider Maximum Mean Discrepancy for statistical alignment and Laplacian Regularization term for incorporating manifold structure. We experimented using benchmark data sets such as the PIE Face Recognition and the Office-Caltech (DeCAF features) object recognition dataset to discourse the limitations of the existing classical machine learning and domain adaptation methods. The performance comparison indicates that our model gave splendid accuracy of 79.41% and 91.97% for PIE and Office-Caltech data sets using linear and Gaussian kernels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853ā€“1865 (2016)

    Article  Google Scholar 

  2. Ghifary, M., Balduzzi, D., Kleijn, W.B., Zhang, M.: Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1414ā€“1430 (2016)

    Article  Google Scholar 

  3. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066ā€“2073. IEEE (2012)

    Google Scholar 

  4. Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B., Smola, A.J.: A kernel method for the two-sample problem. arXiv preprint arXiv:0805.2368 (2008)

  5. Long, M., Wang, J., Ding, G., Pan, S.J., Philip, S.Y.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076ā€“1089 (2013)

    Article  Google Scholar 

  6. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2200ā€“2207 (2013)

    Google Scholar 

  7. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer joint matching for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410ā€“1417 (2014)

    Google Scholar 

  8. Luo, L., Chen, L., Hu, S., Lu, Y., Wang, X.: Discriminative and geometry-aware unsupervised domain adaptation. IEEE Trans. Cybern. 50(9), 3914ā€“3927 (2020)

    Article  Google Scholar 

  9. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  10. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks 22(2), 199ā€“210 (2010)

    Article  Google Scholar 

  11. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345ā€“1359 (2010)

    Google Scholar 

  12. Sanodiya, R.K., Mathew, J., Paul, B., Jose, B.A.: A kernelized unified framework for domain adaptation. IEEE Access 7, 181381ā€“181395 (2019)

    Article  Google Scholar 

  13. Sanodiya, R.K., Yao, L.: A subspace based transfer joint matching with Laplacian regularization for visual domain adaptation. Sensors 20(16), 4367 (2020)

    Article  Google Scholar 

  14. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 402ā€“410 (2018)

    Google Scholar 

  15. Zhang, J., Li, W., Ogunbona, P.: Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1859ā€“1867 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Lekshmi or Rakesh Kumar Sanodiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lekshmi, R., Sanodiya, R.K., Linda, R.J., Jose, B.R., Mathew, J. (2021). Kernelized Transfer Feature Learning on Manifolds. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13109. Springer, Cham. https://doi.org/10.1007/978-3-030-92270-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92270-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92269-6

  • Online ISBN: 978-3-030-92270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics